scholarly journals Estimating relationships between air mass origin and chemical composition

2001 ◽  
Vol 106 (D5) ◽  
pp. 5005-5019 ◽  
Author(s):  
John Methven ◽  
Mathew Evans ◽  
Peter Simmonds ◽  
Gerard Spain
2015 ◽  
Vol 118 ◽  
pp. 118-126 ◽  
Author(s):  
Anna Wonaschütz ◽  
Anselm Demattio ◽  
Robert Wagner ◽  
Julia Burkart ◽  
Naděžda Zíková ◽  
...  

2010 ◽  
Vol 44 (2) ◽  
pp. 164-173 ◽  
Author(s):  
G. Spindler ◽  
E. Brüggemann ◽  
T. Gnauk ◽  
A. Grüner ◽  
K. Müller ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Y. J. Li ◽  
B. P. Lee ◽  
L. Su ◽  
J. C. H. Fung ◽  
C.K. Chan

Abstract. Atmospheric particulate matter (PM) remains poorly understood due to the lack of comprehensive measurements at high time resolution for tracking its dynamic features and the lack of long-term observation for tracking its seasonal variability. Here, we present highly time-resolved and seasonal compositions and characteristics of non-refractory components in PM with a diameter less than 1 μm (NR-PM1) at a suburban site in Hong Kong. The measurements were made with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) at the Hong Kong University of Science and Technology (HKUST) Air Quality Research Supersite for 4 months, with one in each season of the year. The average NR-PM1 concentration of ~ 15 μg m−3 is higher than those AMS measurements made in South Korea and Japan, but lower than those in North China, the Yangtze River Delta and the nearby Pearl River Delta. The seasonal dependence of the total NR-PM1 monthly averaged concentrations was small, but that of the fractions of the species in NR-PM1 was significant. Site characteristic plays an important role in the relative fractions of species in NR-PM1 and our results are generally consistent with measurements at other non-urban sites in this regard. Detailed analyses were conducted on the AMS data in the aspects of (1) species concentrations, (2) size distributions, (3) degree of oxygenation of organics, and (4) positive matrix factorization (PMF)-resolved organic factors in a seasonal context, as well as with air mass origin from back-trajectory analysis. Sulfate had the highest fraction in NR-PM1 (> 40%), and the surrogates of secondary organic species – semi-volatile oxygenated organic aerosol (SVOOA) and low-volatility oxygenated organic aerosol (LVOOA) – prevailed (~ 80%) in the organic portion of NR-PM1. Local contributions to the organic portion of NR-PM1 at this suburban site was strongly dependent on season. The hydrocarbon-like organic aerosol (HOA) factor related to local traffic emissions contributed > 10% to organic aerosols in spring and summer but only 6–7% in autumn and winter. The cooking organic aerosol (COA) factor contributed > 10% to organic aerosols in winter. With the aid of highly time-resolved data, diurnal patterns of the degree of oxygenation of organic aerosols were used to determine the sources and formation processes of the least understood organic portion of PM. The oxygen-to-carbon atomic ratio (O : C) and average carbon oxidation state OS C) showed little variation in autumn and winter, when the long-range transport of oxidized organics dominated, whereas they peaked in the afternoon in spring and summer, when locally produced secondary organic aerosol prevailed. Air mass origin, in contrast, had a strong influence on both NR-PM1 concentrations and the fractions of species in NR-PM1. The findings of the current study provide a better understanding of the role of air mass origin in the seasonal characteristics of the PM composition and the relative importance of local vs. transported organic aerosols in this region.


1993 ◽  
Vol 1 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Volker A. Mohnen ◽  
Richard J. Vong

The chemical composition of clouds collected in the eastern United States has been intensely monitored over a 4-year period as part of the Mountain Cloud Chemistry Project. On the basis of these measurements we prepared a climatology for cloud chemistry, using simple statistical analyses tools and incorporating meteorological and cloud physical and chemical information. Five mountain stations have been established for cloud collection covering the northern and southern Appalachian Mountain range: Whiteface Mountain, New York; Mount Moosilauke, New Hampshire; Shenandoah Mountain, Virginia; Whitetop Mountain, Virginia; and Mount Mitchell, North Carolina. This review presents the major result from this 4-year measurement program. Cloud cover and cloud base over the eastern United States were deduced from the global real-time nephanalysis archives produced by the U.S. Air Force, augmented by local observations. Both active and passive cloud collectors were deployed to sample cloud water on an hourly basis, i.e., with sufficient time resolution to resolve synoptic scale phenomena. Chemical analysis of cloud water was performed by a central analytical laboratory with occasional on-site analysis to satisfy quality control procedures. Reliable methods now exist for collecting cloud-water samples in sufficient quantities for detailed chemical analysis. The chemical composition of cloud water varied significantly between sites. However, the differences in cloud-water ion concentration do not necessarily establish a geographic gradient between the sites but rather reflect differences in air-mass trajectories associated with the synoptic air-flow pattern and differences in sample location above cloud base. The dependence of cloud-water ion concentrations on synoptic weather type and observed differences in relative frequencies of warm sector, marine flow, and post-cold frontal synoptic types between northern and southern sites suggest that the north–south differences in cloud-water ion concentrations are related to cloud climatology at the northern sites. When air-mass trajectories shift from southwest to northwest, the concentrations of H+, SO42−, NO3− and NH4+ normally decrease but the southern sites continue to receive high concentrations under northwest flow. The height of cloud-water sample collection above cloud base was found to be an additional source of variability in both cloud-water chemistry and liquid-water content. Seasonal variation in cloud-water chemical composition was investigated at one site only. Sulfate levels were found to be significantly lower in supercooled clouds (i.e., during the 'cold' season) than in 'warm' clouds, but nitrate levels remained about the same.Key words: cloud chemistry, cloud frequency, air-mass trajectories, ANOVA.


2015 ◽  
Vol 15 (6) ◽  
pp. 2935-2951 ◽  
Author(s):  
A. Ripoll ◽  
M. C. Minguillón ◽  
J. Pey ◽  
J. L. Jimenez ◽  
D. A. Day ◽  
...  

Abstract. Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011–April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM1 components are attributed to variations in evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. OA was also mainly composed (71%) of OOA, with contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in winter sporadic long-range transport from mainland Europe is observed. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources and processes of SOA formation at remote sites.


2013 ◽  
Vol 118 (3) ◽  
pp. 1459-1470 ◽  
Author(s):  
Clara Orbe ◽  
Mark Holzer ◽  
Lorenzo M. Polvani ◽  
Darryn Waugh
Keyword(s):  
Air Mass ◽  

Author(s):  
Denis V. Simonenkov ◽  
Boris D. Belan ◽  
Georgii A. Ivlev ◽  
Artem V. Kozlov ◽  
Tatyana M. Rasskazchikova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document