scholarly journals Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.)

2015 ◽  
Vol 15 (6) ◽  
pp. 2935-2951 ◽  
Author(s):  
A. Ripoll ◽  
M. C. Minguillón ◽  
J. Pey ◽  
J. L. Jimenez ◽  
D. A. Day ◽  
...  

Abstract. Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011–April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM1 components are attributed to variations in evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. OA was also mainly composed (71%) of OOA, with contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in winter sporadic long-range transport from mainland Europe is observed. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources and processes of SOA formation at remote sites.

2014 ◽  
Vol 14 (21) ◽  
pp. 28809-28844 ◽  
Author(s):  
A. Ripoll ◽  
M. C. Minguillón ◽  
J. Pey ◽  
J. L. Jimenez ◽  
D. A. Day ◽  
...  

Abstract. Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the Western Mediterranean Basin (WMB) were conducted for 10 months (July 2011–April 2012). An Aerosol Chemical Speciation Monitor (ACSM) was co-located with other on-line and off-line PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time for this region. Seasonal trends in PM1 components are attributed to variations in: evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reserve strata at relatively high altitudes. Sporadically, MSC is affected by air masses from North Africa. The combination of all these atmospheric processes at local, regional and continental scales results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly oxygenated organic aerosol (OOA), with two different types: semi-volatile (SV-OOA) and low-volatile (LV-OOA), and both showed marked diurnal cycles regardless of the air mass origin, especially SV-OOA. This different diurnal variation compared to inorganic aerosols suggested that OA components at MSC are not only associated with anthropogenic and long-range-transported secondary OA (SOA), but also with recently-produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. Moreover, in winter sporadic long-range transport from mainland Europe is observed and leads to less marked diurnal patterns. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources of SOA at remote sites.


2019 ◽  
Vol 19 (19) ◽  
pp. 12477-12494 ◽  
Author(s):  
Armin Sigmund ◽  
Korbinian Freier ◽  
Till Rehm ◽  
Ludwig Ries ◽  
Christian Schunk ◽  
...  

Abstract. To assist atmospheric monitoring at high-alpine sites, a statistical approach for distinguishing between the dominant air masses was developed. This approach was based on a principal component analysis using five gas-phase and two meteorological variables. The analysis focused on the Schneefernerhaus site at Zugspitze Mountain, Germany. The investigated year was divided into 2-month periods, for which the analysis was repeated. Using the 33.3 % and 66.6 % percentiles of the first two principal components, nine air mass regimes were defined. These regimes were interpreted with respect to vertical transport and assigned to the BL (recent contact with the boundary layer), UFT/SIN (undisturbed free troposphere or stratospheric intrusion), and HYBRID (influences of both the boundary layer and the free troposphere or ambiguous) air mass classes. The input data were available for 78 % of the investigated year. BL accounted for 31 % of the cases with similar frequencies in all seasons. UFT/SIN comprised 14 % of the cases but was not found from April to July. HYBRID (55 %) mostly exhibited intermediate characteristics, whereby 17 % of the HYBRID class suggested an influence from the marine boundary layer or the lower free troposphere. The statistical approach was compared to a mechanistic approach using the ceilometer-based mixing layer height from a nearby valley site and a detection scheme for thermally induced mountain winds. Due to data gaps, only 25 % of the cases could be classified using the mechanistic approach. Both approaches agreed well, except in the rare cases of thermally induced uplift. The statistical approach is a promising step towards a real-time classification of air masses. Future work is necessary to assess the uncertainty arising from the standardization of real-time data.


2013 ◽  
Vol 13 (15) ◽  
pp. 7343-7358 ◽  
Author(s):  
M. Lopez ◽  
M. Schmidt ◽  
M. Delmotte ◽  
A. Colomb ◽  
V. Gros ◽  
...  

Abstract. Measurements of the mole fraction of the CO2 and its isotopes were performed in Paris during the MEGAPOLI winter campaign (January–February 2010). Radiocarbon (14CO2) measurements were used to identify the relative contributions of 77% CO2 from fossil fuel consumption (CO2ff from liquid and gas combustion) and 23% from biospheric CO2 (CO2 from the use of biofuels and from human and plant respiration: CO2bio). These percentages correspond to average mole fractions of 26.4 ppm and 8.2 ppm for CO2ff and CO2bio, respectively. The 13CO2 analysis indicated that gas and liquid fuel contributed 70% and 30%, respectively, of the CO2 emission from fossil fuel use. Continuous measurements of CO and NOx and the ratios CO/CO2ff and NOx/CO2ff derived from radiocarbon measurements during four days make it possible to estimate the fossil fuel CO2 contribution over the entire campaign. The ratios CO/CO2ff and NOx/CO2ff are functions of air mass origin and exhibited daily ranges of 7.9 to 14.5 ppb ppm−1 and 1.1 to 4.3 ppb ppm−1, respectively. These ratios are consistent with different emission inventories given the uncertainties of the different approaches. By using both tracers to derive the fossil fuel CO2, we observed similar diurnal cycles with two maxima during rush hour traffic.


2008 ◽  
Vol 8 (7) ◽  
pp. 1881-1896 ◽  
Author(s):  
M. Santese ◽  
F. De Tomasi ◽  
M. R. Perrone

Abstract. Aerosol products by AERONET sun-sky radiometer measurements combined with air-mass backtrajectories were analyzed to identify source regions and pathways of air masses carrying aerosols to south-east Italy, and to determine the dependence of aerosol mean optical properties on advection patterns. Aerosol optical depth (AOD), fine mode fraction (η ), single scattering albedo (SSA), asymmetry factor (g), and lidar ratio (Lr) at 440 nm were used to characterize aerosol properties. The analysis of 5-day-backtrajectories ending in Lecce on south-east Italy and referring to 240 measurement days of the 2003–2004 years revealed that 32% of the measurement days were characterized by air masses coming from all continental European sources with the exception of Spain. 3% of the measurement days were characterized by air masses coming from both the Southern Mediterranean Sea and the Africa continent, and the Western Mediterranean, the Iberian Peninsula, and the Atlantic Ocean. 62% of the measurement days were characterized by mixed advection patterns. We found that AOD, SSA and g average values were not significantly dependent on air mass source regions. In contrast, η and Lr average values were quite affected by the air mass source region. AOD, &eta, SSA, g, and Lr average values, which were equal to 0.29±0.15, 0.93±0.03, 0.93±0.03, 0.67±0.03, and 72±20 sr, respectively indicated that the aerosol advected from all continental European sources with the exception of Spain, could be considered representative of "continental average aerosol", mostly made of water soluble and a small amount of soot and insoluble components. Polluted-desert dust particles characterized by AOD=0.29±0.05, η=0.72±0.05, SSA=0.94±0.03, g=0.69±0.02, Lr=56±13 sr, were advected over south-east Italy from the Southern Mediterranean Sea and the Africa continent. The Western Mediterranean, the Iberian Peninsula, and the Atlantic Ocean were instead responsible of the advection of maritime-polluted particles, which were characterized by AOD=0.27±0.17, η=0.8±0.1, SSA=0.94±0.03, g=0.67±0.03, Lr=58±24 sr. Hence, we found that the aerosol load over south-east Italy was dominated by moderately-absorbing, fine-mode particles even if it was also affected by the minor contribution of desert and maritime type aerosol. The application of an aerosol mask to the data points retrieved on measurement days characterized by mixed advection patterns, supported last comment


2021 ◽  
Author(s):  
Diego Aliaga ◽  
Victoria A. Sinclair ◽  
Marcos Andrade ◽  
Paulo Artaxo ◽  
Samara Carbone ◽  
...  

Abstract. Observations of aerosol and trace gases in the remote troposphere are vital to quantify background concentrations and identify long term trends in atmospheric composition on large spatial scales. Measurements made at high altitude are often used to study free tropospheric air however such high-altitude sites can be influenced by boundary layer air masses. Thus, accurate information on air mass origin and transport pathways to high altitude sites is required. Here we present a new method, based on the source-receptor relationship (SRR) obtained from backwards WRF-FLEXPART simulations and a k-means clustering approach, to identify source regions of air masses arriving at measurement sites. Our method is tailored to areas of complex terrain and to stations influenced by both local and long-range sources. We have applied this method to the Chacaltaya (CHC) GAW station (5240 m a.s.l.,16.35° S, 68.13° W) for the 6-month duration of the “Southern hemisphere high altitude experiment on particle nucleation and growth” (SALTENA) to identify where sampled air masses originate and to quantify the influence of the boundary layer and the free troposphere. A key aspect of our method is that it is probabilistic and for each observation time, more than one air mass (cluster) can influence the station and the percentage influence of each air mass can be quantified. This is in contrast to binary methods, which label each observation time as influenced either by boundary layer or free troposphere air masses. We find that on average, 9% of the air sampled at CHC, at any given observation time, has been in contact with the surface within 4 days prior to arriving at CHC, 24% of the air was located below 1.5 km above ground level and consequently, 76% of the measured air masses at CHC represent free tropospheric air. However, pure free-tropospheric influences are rare and often samples are concurrently influenced by both boundary-layer and free-tropospheric air masses. A clear diurnal cycle is present with very few air masses that have been in contact with the surface being detected at night. The 6-month analysis also shows that the most dominant air mass (cluster) originates in the Amazon and is responsible for 29% of the sampled air. Furthermore, short-range clusters (origins within 100 km of CHC) have high temporal frequency modulated by local meteorology driven by the diurnal cycle whereas the mid- and long-range clusters’ (>200 km) variability occurs on timescales governed by synoptic-scale dynamics. To verify the reliability of our method, in-situ sulfate observations from CHC are combined with the SRR clusters to correctly identify the (pre-known) source of the sulfate: the Sabancaya volcano located 400 km northwest from the station.


2015 ◽  
Vol 15 (1) ◽  
pp. 965-1000 ◽  
Author(s):  
M. C. Minguillón ◽  
A. Ripoll ◽  
N. Pérez ◽  
A. S. H. Prévôt ◽  
F. Canonaco ◽  
...  

Abstract. An Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research Inc.) was deployed at Montseny (MSY, 720 m a.s.l.) regional background site in the Western Mediterranean from June 2012 to July 2013 to measure real-time inorganic (nitrate, sulphate, ammonium and chloride) and organic submicron aerosol concentrations. Co-located measurements were also carried out including real-time submicron particulate matter (PM1) and black carbon (BC) concentrations, and off-line PM1 chemical analysis. This is one of the few studies that compare ACSM data with off-line PM1 measurements, avoiding the tail of the coarse mode included in the PM2.5 fraction. The ACSM + BC concentrations agreed with the PM1 measurements, and strong correlation was found between the concentrations of ACSM species and the off-line measurements, although some discrepancies remain unexplained. Results point to a current underestimation of the relative ionization efficiency (RIE) established for organic aerosol (OA), which should be revised in the future. The OA was the major component of submicron aerosol (53% of PM1), with a higher contribution in summer (58% of PM1) than in winter (45% of PM1). Source apportionment of OA was carried out by applying Positive Matrix Factorization (PMF) using the Multilinear Engine (ME-2) to the organic mass spectral data matrix. Three sources were identified in summer: hydrocarbon-like OA (HOA), low-volatile oxygenated OA (LV-OOA), and semi-volatile oxygenated OA (SV-OOA). The secondary OA (SOA, 4.7 μg m−3, sum of LV-OOA and SV-OOA) accounted for 85% of the total OA and its formation during daytime (mainly SV-OOA) was estimated to be 1.1 μg m−3. In winter, HOA was also identified (12% of OA), a contribution from biomass burning OA was included, and it was not possible to differentiate two different SOA factors but a single OOA factor was resolved. The OOA contribution represented the 60% of the total OA, with a degree of oxidation higher than both OOA summer factors. An intense wildfire episode was studied obtaining a region-specific BBOA profile.


Erdkunde ◽  
2011 ◽  
Vol 65 (3) ◽  
pp. 277-290 ◽  
Author(s):  
José A. Valiente ◽  
María J. Estrela ◽  
David Corell ◽  
David Fuentes ◽  
Alejandro Valdecantos ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
pp. 1801-1856 ◽  
Author(s):  
N. Fourrié ◽  
É. Bresson ◽  
M. Nuret ◽  
C. Jany ◽  
P. Brousseau ◽  
...  

Abstract. During autumn 2012 and winter 2013, two Special Observation Periods (SOPs) of the Hydrological cycle in the Mediterranean Experiment (HyMeX) took place. For the preparatory studies and to support the instrument deployment during the field campaign, a dedicated version of the operational convective-scale AROME-France model was developed: the AROME-WMED model. It covers the western Mediterranean basin with a 48 h forecast range. It provided real time analyses and forecasts which were sent daily to the HyMeX operational centre to forecast high precipitation events and to help decision makers on the deployment of observation instruments. This paper presents the main features of this numerical weather prediction system in terms of data assimilation and forecast. Some specific data of the HyMeX SOP were assimilated in real time. The forecast skill of the AROME-WMED is then assessed with objective scores and compared to the operational AROME-France model, for both autumn 2012 (5 September to 6 November 2012) and winter 2013 (1 February to 15 March 2013) SOPs. The overall performance of AROME-WMED is good and similar to those of AROME-France for the 0 to 30 h common forecast range. The 24 to 48 h forecast range is of course less accurate but remains useful for scheduling observation deployment. The characteristics of parameters such as precipitation, temperature or humidity, are illustrated by one heavy precipitation case study that occurred over the south of Spain.


2020 ◽  
Author(s):  
Diego Aliaga ◽  
Victoria Sinclair ◽  
Zha Qiaozhi ◽  
Marcos Andrade ◽  
Claudia Mohr ◽  
...  

<p>Measuring aerosol at high altitude sites is useful as it enables sampling of the free troposphere over long time frames. However, in order to draw conclusions from station measurement data, we need to determine which air mass sources are present at any given sampling time. This task is challenging at mountain sites, due to complex topography which in turn drives complex meteorology. Between December 2017 and May 2018, the Southern hemisphere high ALTitude Experiment on particle Nucleation And growth (SALTENA) campaign was conducted at Chacaltaya in Bolivia at 5240 m a.s.l. The data set obtained in this campaign contains records of nearly all relevant aerosol characteristics and aerosol precursors. To identify the source regions of the observed air masses we performed high resolution (down to 1 km) simulations with the Weather Research and Forecasting Model (WRF). The WRF model output is then used to as input to the Lagrangian particle dispersion model (FLEXPART). FLEXPART simulations are initialised every hour and 20 thousand particles are released per hour and track backwards in time for 96 hours. The FLEXPART footprint output is regridded onto a log-polar cylindrical grid where we perform a ‘K-means’ cluster analysis on the 3D cells defined by the grid. The cells are clustered based on the time series of their source receptor relationship (i.e. emission sensitivities), producing regions (clusters) resolved not only in the horizontal but also the vertical domain. Our results show that regions located close to the station (<100km) have a low but persistent influence with diurnal variations and close contact to the surface. Mid-range regions (100-800km) have the highest influence with a higher percentage of air masses from the free troposphere. Long-range regions (>800km) have a higher influence than the short-range regions but lower than the middle-range regions. Most of the air masses from these long-range regions come from the free troposphere. With this method we have successfully resolved the various air mass influences at the measurement site. The high meteorological resolution and the stochastic nature of FLEXPART are seminal for capturing the transport pathways.</p>


2009 ◽  
Vol 9 (14) ◽  
pp. 4603-4619 ◽  
Author(s):  
P. Cristofanelli ◽  
A. Marinoni ◽  
J. Arduini ◽  
U. Bonafè ◽  
F. Calzolari ◽  
...  

Abstract. High levels of trace gas (O3 and CO) and aerosol (BC, fine and coarse particle volumes), as well as high scattering coefficient (σp) values, were recorded at the regional GAW-WMO station of Mt. Cimone (CMN, 2165 m a.s.l., Italy) during the period 26–30 August 2007. Analysis of air-mass circulation, aerosol chemical characterization and trace gas and aerosol enhancement ratios (ERs), showed that high O3 and aerosol levels were likely linked to (i) the transport of anthropogenic pollution from northern Italy, and (ii) the advection of air masses rich in mineral dust and biomass burning (BB) products from North Africa. In particular, during the advection of air masses from North Africa, the CO and aerosol levels (CO: 175 ppbv, BC: 1015 ng/m3, fine particle volume: 3.00 μm3 cm−3, σp: 84.5 Mm−1) were even higher than during the pollution event (CO: 138 ppbv, BC: 733 ng/m3, fine particles volume: 1.58 μm3 cm−3, σp: 44.9 Mm


Sign in / Sign up

Export Citation Format

Share Document