Design and field experiments of a ground-penetrating radar for Mars exploration

Author(s):  
Carl Leuschen
Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. J25-J30 ◽  
Author(s):  
Georgios P. Tsoflias ◽  
Matthew W. Becker

Time-lapse ground-penetrating-radar (GPR) surveys exploit signal-amplitude changes to monitor saline tracers in fractures and to identify groundwater flow paths. However, the relationships between GPR signal amplitude, phase, and frequency with fracture aperture and fluid electrical conductivity are not well understood. We used analytical modeling, numerical simulations, and field experiments of multifrequency GPR to investigate these relationships for a millimeter-scale-aperture fracture saturated with water of varying salinity. We found that the response of lower-frequency radar signals detects changes in fluid salinity better than the response of higher-frequency signals. Increasing fluid electrical conductivity decreases low-frequency GPR signal wavelength, which improves its thin-layer resolution capability. We concluded that lower signal frequencies, such as [Formula: see text], and saline tracers of up to [Formula: see text] conductivity are preferable when using GPR to monitor flow in fractured rock. Furthermore, we found that GPR amplitude and phase responses are detectable in the field and predictable by EM theory and modeling; therefore, they can be related to fracture aperture and fluid salinity for hydrologic investigations of fractured-rock flow and transport properties.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 354 ◽  
Author(s):  
Zhang ◽  
Derival ◽  
Albrecht ◽  
Ampatzidis

This paper investigates the influences of several limiting factors on the performance of ground penetrating radar (GPR) in accurately detecting huanglongbing (HLB)-infected citrus roots and determining their main structural characteristics. First, single-factor experiments were conducted to evaluate GPR performance. The factors that were evaluated were (i) root diameter; (ii) root moisture level; (iii) root depth; (iv) root spacing; (v) survey angle; and, (vi) soil moisture level. Second, two multi-factor field experiments were conducted to evaluate the performance of the GPR in complex orchard environments. The GPR generated a hyperbola in the radar profile upon root detection; the diameter of the root was successfully determined according to the width of the hyperbola when the roots were larger than 6 mm in diameter. The GPR also distinguished live from dead roots, a capability that is indispensable for studying the effects of soil-borne and other diseases on the citrus tree root system. The GPR can distinguish the roots only if their horizontal distance is greater than 10 cm and their vertical distance is greater than 5 cm if two or more roots are in proximity. GPR technology can be applied to determine the efficacy of advanced crop production strategies, especially under the pressures of disease and environmental stresses.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


2017 ◽  
Vol 3 (1) ◽  
pp. 73-83
Author(s):  
Rahmayati Alindra ◽  
Heroe Wijanto ◽  
Koredianto Usman

Ground Penetrating Radar (GPR) adalah salah satu jenis radar yang digunakan untuk menyelidiki kondisi di bawah permukaan tanah tanpa harus menggali dan merusak tanah. Sistem GPR terdiri atas pengirim (transmitter), yaitu antena yang terhubung ke generator sinyal dan bagian penerima (receiver), yaitu antena yang terhubung ke LNA dan ADC yang kemudian terhubung ke unit pengolahan data hasil survey serta display sebagai tampilan output-nya dan post  processing untuk alat bantu mendapatkan informasi mengenai suatu objek. GPR bekerja dengan cara memancarkan gelombang elektromagnetik ke dalam tanah dan menerima sinyal yang dipantulkan oleh objek-objek di bawah permukaan tanah. Sinyal yang diterima kemudian diolah pada bagian signal processing dengan tujuan untuk menghasilkan gambaran kondisi di bawah permukaan tanah yang dapat dengan mudah dibaca dan diinterpretasikan oleh user. Signal processing sendiri terdiri dari beberapa tahap yaitu A-Scan yang meliputi perbaikan sinyal dan pendektesian objek satu dimensi, B-Scan untuk pemrosesan data dua dimensi  dan C-Scan untuk pemrosesan data tiga dimensi. Metode yang digunakan pada pemrosesan B-Scan salah satunya adalah dengan  teknik pemrosesan citra. Dengan pemrosesan citra, data survey B-scan diolah untuk didapatkan informasi mengenai objek. Pada penelitian ini, diterapkan teori gradien garis pada pemrosesan citra B-scan untuk menentukan bentuk dua dimensi dari objek bawah tanah yaitu persegi, segitiga atau lingkaran. 


Sign in / Sign up

Export Citation Format

Share Document