scholarly journals Determination of the altitudinal peak of Cosmic Noise Absorption using a vertical parallax technique

2004 ◽  
Vol 31 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. B. Terkildsen ◽  
B. J. Fraser ◽  
H. Yamagishi
2018 ◽  
Vol 36 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Derek McKay ◽  
Noora Partamies ◽  
Juha Vierinen

Abstract. The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1–2 h. During the growth phase, an equatorward moving, east–west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (<10  keV) and high- (> 10 keV) energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: The peak of the cosmic noise absorption (CNA) arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. There is no evidence of pulsations in the CNA. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40±10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora. Keywords. Ionosphere (auroral ionosphere)


2008 ◽  
Vol 26 (8) ◽  
pp. 2311-2321 ◽  
Author(s):  
C.-F. Enell ◽  
P. T. Verronen ◽  
M. J. Beharrell ◽  
J. P. Vierinen ◽  
A. Kero ◽  
...  

Abstract. Two case studies of upper mesospheric and lower thermospheric (UMLT) high-latitude effects of solar X-ray flares are presented. Sodankylä Ion-neutral Chemistry Model (SIC) electron density profiles agree with D-region EISCAT and riometer observations, provided that the profiles of the most variable ionisable component, nitric oxide, are adjusted to compensate for NOx production during preceding geomagnetically active periods. For the M6-class flare of 27 April 2006, following a quiet period, the agreement with cosmic noise absorption observed by the Sodankylä riometers was within reasonable limits without adjustment of the [NO] profile. For the major (X17-class) event of 28 October 2003, following high auroral activity and solar proton events, the NO concentration had to be increased up to on the order of 108 cm−3 at the D-region minimum. Thus [NO] can in principle be measured by combining SIC with observations, if the solar spectral irradiance and particle precipitation are adequately known. As the two case events were short and modelled for high latitudes, the resulting neutral chemical changes are insignificant. However, changes in the model ion chemistry occur, including enhancements of water cluster ions.


2019 ◽  
Vol 46 (11) ◽  
pp. 5717-5724 ◽  
Author(s):  
Bing Yang ◽  
Emma Spanswick ◽  
Jun Liang ◽  
Eric Grono ◽  
Eric Donovan

Nature ◽  
1967 ◽  
Vol 214 (5095) ◽  
pp. 1321-1322 ◽  
Author(s):  
JOHN REID

2011 ◽  
Vol 9 ◽  
pp. 349-357 ◽  
Author(s):  
T. Renkwitz ◽  
W. Singer ◽  
R. Latteck ◽  
M. Rapp

Abstract. The Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn started to install a new MST radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the previous ALWIN radar which has been successfully operated for more than 10 years. The MAARSY radar provides increased temporal and spatial resolution combined with a flexible sequential point-to-point steering of the radar beam. To increase the spatiotemporal resolution of the observations a 16-port Butler matrix has been built and implemented to the radar. In conjunction with 64 Yagi antennas of the former ALWIN antenna array the Butler matrix simultaneously provides 16 individual beams. The beam forming capability of the Butler matrix arrangement has been verified observing the galactic cosmic radio noise of the supernova remnant Cassiopeia A. Furthermore, this multi beam configuration has been used in passive experiments to estimate the cosmic noise absorption at 53.5 MHz during events of enhanced solar and geomagnetic activity as indicators for enhanced ionization at altitudes below 90 km. These observations are well correlated with simultaneous observations of corresponding beams of the co-located imaging riometer AIRIS (69.14° N, 16.02° E) at 38.2 MHz. In addition, enhanced cosmic noise absorption goes along with enhanced electron densities at altitudes below about 90 km as observed with the co-located Saura MF radar using differential absorption and differential phase measurements.


Sign in / Sign up

Export Citation Format

Share Document