scholarly journals TES spectroscopic identification of a region of persistent water ice clouds on the flanks of Arsia Mons Volcano, Mars

2005 ◽  
Vol 110 (E5) ◽  
Author(s):  
E. Z. Noe Dobrea
2008 ◽  
Vol 35 (7) ◽  
pp. n/a-n/a ◽  
Author(s):  
R. John Wilson ◽  
Stephen R. Lewis ◽  
Luca Montabone ◽  
Michael D. Smith

2021 ◽  
Author(s):  
Alex Innanen ◽  
Brittney Cooper ◽  
Charissa Campbell ◽  
Scott Guzewich ◽  
Jacob Kloos ◽  
...  

<p>1. INTRODUCTION</p><p>The Mars Science Laboratory (MSL) is located in Gale Crater (4.5°S, 137.4°E), and has been performing cloud observations for the entirety of its mission, since its landing in 2012 [eg. 1,2,3]. One such observation is the Phase Function Sky Survey (PFSS), developed by Cooper et al [3] and instituted in Mars Year (MY) 34 to determine the scattering phase function of Martian water-ice clouds. The clouds of interest form during the Aphelion Cloud Belt (ACB) season (L<sub>s</sub>=50°-150°), a period of time during which there is an increase in the formation of water-ice clouds around the Martian equator [4]. The PFSS observation was also performed during the MY 35 ACB season and the current MY 36 ACB season.</p><p>Following the MY 34 ACB season, Mars experienced a global dust storm which lasted from L<sub>s</sub>~188° to L<sub>s</sub>~250° of that Mars year [5]. Global dust storms are planet-encircling storms which occur every few Mars years and can significantly impact the atmosphere leading to increased dust aerosol sizes [6], an increase in middle atmosphere water vapour [7], and the formation of unseasonal water-ice clouds [8]. While the decrease in visibility during the global dust storm itself made cloud observation difficult, comparing the scattering phase function prior to and following the global dust storm can help to understand the long-term impacts of global dust storms on water-ice clouds.</p><p>2. METHODS</p><p>The PFSS consists of 9 cloud movies of three frames each, taken using MSL’s navigation cameras, at a variety of pointings in order to observe a large range of scattering angles. The goal of the PFSS is to characterise the scattering properties of water-ice clouds and to determine ice crystal geometry.  In each movie, clouds are identified using mean frame subtraction, and the phase function is computed using the formula derived by Cooper et al [3]. An average phase function can then be computed for the entirety of the ACB season.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.eda718c85da062913791261/sdaolpUECMynit/1202CSPE&app=m&a=0&c=67584351a5c2fde95856e0760f04bbf3&ct=x&pn=gnp.elif&d=1" alt="Figure 1 – Temporal Distribution of Phase Function Sky Survey Observations for Mars Years 34 and 35" width="800" height="681"></p><p>Figure 1 shows the temporal distributions of PFSS observations taken during MYs 34 and 35. We aim to capture both morning and afternoon observations in order to study any diurnal variability in water-ice clouds.</p><p>3. RESULTS AND DISCUSSION</p><p>There were a total of 26 PFSS observations taken in MY 35 between L<sub>s</sub>~50°-160°, evenly distributed between AM and PM observations. Typically, times further from local noon (i.e. earlier in the morning or later in the afternoon) show stronger cloud features, and run less risk of being obscured by the presence of the sun. In all movies in which clouds are detected, a phase function can be calculated, and an average phase function determined for the whole ACB season.  </p><p>Future work will look at the water-ice cloud scattering properties for the MY 36 ACB season, allowing us to get more information about the interannual variability of the ACB and to further constrain the ice crystal habit. The PFSS observations will not only assist in our understanding of the long-term atmospheric impacts of global dust storms but also add to a more complete image of time-varying water-ice cloud properties.</p>


Icarus ◽  
2021 ◽  
pp. 114693
Author(s):  
David Hinson ◽  
Huiqun Wang ◽  
John Wilson ◽  
Aymeric Spiga

2020 ◽  
Author(s):  
Megan Brown ◽  
Manish Patel ◽  
Stephen Lewis ◽  
Amel Bennaceur

<p>This project maps ozone and ice-water clouds detected in the martian atmosphere to assess the atmospheric chemistry between ozone, water-ice and hydroxyl radicals. Hydroxyl photochemistry may be indicated by a non-negative or fluctuating correlation between ozone and water-ice. This will contribute to understanding the stability of carbon dioxide and atmospheric chemistry of Mars.</p><p>Ozone (O<sub>3</sub>) can be used for tracking general circulation of the martian atmosphere and other trace chemicals, as well as acting as a proxy for water vapour. The photochemical break down of water vapour produces hydroxyl radicals known to participate in the destruction of ozone. The relationship between water vapour and ozone is therefore negatively correlated. Atmospheric water-ice concentrations may also follow this theory. The photochemical reactions between ozone, water-ice clouds and hydroxyl radicals are poorly understood in the martian atmosphere due to the short half-life and rapid reaction rates of hydroxyl radicals. These reactions destroy ozone, as well as indirectly contributing to the water cycle and stability of carbon dioxide (measured by the CO<sub>2</sub>–CO ratio). However, the detection of ozone in the presence of water-ice clouds suggests the relationship between them is not always anti-correlated. Global climate models (GCMs) struggle to describe the chemical processes occurring within water-ice clouds. For example, the heterogeneous photochemistry described in the LMD (Laboratoire de Météorologie Dynamique) GCM did not significantly improve the model. This leads to the following questions:<em> what is the relationship between water-ice clouds and ozone, and can the chemical reactions of hydroxyl radicals occurring within water-ice clouds be determined through this relationship?</em></p><p>This project aims to address these questions using nadir and occultation retrievals of ozone and water-ice clouds, potentially using retrievals from the UVIS instrument aboard NOMAD (Nadir and Occultation for Mars Discovery), ExoMars Trace Gas Orbiter. Analysis will include temporal and spatial binning of data to help identify any patterns present. Correlation tests will be conducted to determine the significance of any relationship at short term and seasonal scales along a range of zonally averaged latitude photochemical model from the LMD-UK GCM will be used to further explore the chemical processes.</p><p>Interactions between hydroxyl radicals and the surface of water-ice clouds are poorly understood. Ozone abundance is greatest in the winter at the polar regions, which also coincides with the appearance of the polar hood clouds. The use of nadir observations will enable the comparison between total column of ozone abundance at high latitudes (>60°S) in a range of varying water-ice cloud opacities, as well as the equatorial region (30°S – 30°N) during aphelion. Water-ice clouds may remove hydroxyl radicals responsible for the destruction of ozone and thus the previously assumed anticorrelation between ozone and water-ice will not hold. The project will therefore assess the hypothesis that: <em>water-ice clouds may act as a sink for hydroxyl radicals.</em></p>


2008 ◽  
Vol 113 (null) ◽  
Author(s):  
Jagruti Pathak ◽  
Diane V. Michelangeli ◽  
Leonce Komguem ◽  
James Whiteway ◽  
Leslie K. Tamppari

2006 ◽  
Vol 134 (3) ◽  
pp. 897-918 ◽  
Author(s):  
M. Chiriaco ◽  
R. Vautard ◽  
H. Chepfer ◽  
M. Haeffelin ◽  
J. Dudhia ◽  
...  

Abstract The ability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate midlatitude ice clouds is evaluated. Model outputs are compared to long-term meteorological measurements by active (radar and lidar) and passive (infrared and visible fluxes) remote sensing collected at an atmospheric observatory near Paris, France. The goal is to understand which of four microphysical schemes is best suited to simulate midlatitude ice clouds. The methodology consists of simulating instrument observables from the model outputs without any profile inversion, which allows the authors to use fewer assumptions on microphysical and optical properties of ice particles. Among the four schemes compared in the current study, the best observation-to-simulations scores are obtained with Reisner et al. provided that the particles’ sedimentation velocity from Heymsfield and Donner is used instead of that originally proposed. For this last scheme, the model gives results close to the measurements for clouds with medium optical depth of typically 1 to 3, whatever the season. In this configuration, MM5 simulates the presence of midlatitude ice clouds in more than 65% of the authors’ selection of observed cloud cases. In 35% of the cases, the simulated clouds are too persistent whatever the microphysical scheme and tend to produce too much solid water (ice and snow) and not enough liquid water.


2000 ◽  
Vol 105 (E2) ◽  
pp. 4087-4107 ◽  
Author(s):  
Leslie K. Tamppari ◽  
Richard W. Zurek ◽  
David A. Paige
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document