Investigating the relationship between ozone and water-ice in the martian atmosphere

Author(s):  
Megan Brown ◽  
Manish Patel ◽  
Stephen Lewis ◽  
Amel Bennaceur

<p>This project maps ozone and ice-water clouds detected in the martian atmosphere to assess the atmospheric chemistry between ozone, water-ice and hydroxyl radicals. Hydroxyl photochemistry may be indicated by a non-negative or fluctuating correlation between ozone and water-ice. This will contribute to understanding the stability of carbon dioxide and atmospheric chemistry of Mars.</p><p>Ozone (O<sub>3</sub>) can be used for tracking general circulation of the martian atmosphere and other trace chemicals, as well as acting as a proxy for water vapour. The photochemical break down of water vapour produces hydroxyl radicals known to participate in the destruction of ozone. The relationship between water vapour and ozone is therefore negatively correlated. Atmospheric water-ice concentrations may also follow this theory. The photochemical reactions between ozone, water-ice clouds and hydroxyl radicals are poorly understood in the martian atmosphere due to the short half-life and rapid reaction rates of hydroxyl radicals. These reactions destroy ozone, as well as indirectly contributing to the water cycle and stability of carbon dioxide (measured by the CO<sub>2</sub>–CO ratio). However, the detection of ozone in the presence of water-ice clouds suggests the relationship between them is not always anti-correlated. Global climate models (GCMs) struggle to describe the chemical processes occurring within water-ice clouds. For example, the heterogeneous photochemistry described in the LMD (Laboratoire de Météorologie Dynamique) GCM did not significantly improve the model. This leads to the following questions:<em> what is the relationship between water-ice clouds and ozone, and can the chemical reactions of hydroxyl radicals occurring within water-ice clouds be determined through this relationship?</em></p><p>This project aims to address these questions using nadir and occultation retrievals of ozone and water-ice clouds, potentially using retrievals from the UVIS instrument aboard NOMAD (Nadir and Occultation for Mars Discovery), ExoMars Trace Gas Orbiter. Analysis will include temporal and spatial binning of data to help identify any patterns present. Correlation tests will be conducted to determine the significance of any relationship at short term and seasonal scales along a range of zonally averaged latitude photochemical model from the LMD-UK GCM will be used to further explore the chemical processes.</p><p>Interactions between hydroxyl radicals and the surface of water-ice clouds are poorly understood. Ozone abundance is greatest in the winter at the polar regions, which also coincides with the appearance of the polar hood clouds. The use of nadir observations will enable the comparison between total column of ozone abundance at high latitudes (>60°S) in a range of varying water-ice cloud opacities, as well as the equatorial region (30°S – 30°N) during aphelion. Water-ice clouds may remove hydroxyl radicals responsible for the destruction of ozone and thus the previously assumed anticorrelation between ozone and water-ice will not hold. The project will therefore assess the hypothesis that: <em>water-ice clouds may act as a sink for hydroxyl radicals.</em></p>

In a footnote to my paper entitled “ The Law of Distribution where one of the Phases possesses Mechanical Rigidity," I attempted to show how the results obtained by Professor Trouton for the absorption of water vapour by cotton could be reconciled with those obtained by me in the case of similar systems, such as carbon dioxide and amorphous carbon. As the apparatus I had employed in the investigation referred to was particularly suited to the accurate measurement of low pressures, I obtained Professor Trouton’s permission to repeat his work, and to investigate the relationship of pressure and concentration for the systems water-cotton and water-wool at the temperature of melting ice. I was particularly anxious to redetermine the lower portions of the curves, for as in Professor Trouton’s experiments the material was dried at the air temperature, it appeared probable that it contained water at the commencement of the experiment, and that the true origin of his curves lay further to the left than the results appeared to show. If this were the case, the true curve representing equilibrium in the system water-cotton might closely resemble those representing equilibrium in the system carbon dioxide and amorphous carbon.


2021 ◽  
Author(s):  
Mikhail Luginin ◽  
Nikolay Ignatiev ◽  
Anna Fedorova ◽  
Alexander Trokhimovskiy ◽  
Alexey Grigoriev ◽  
...  

<p>Carbon dioxide is the major constituent of the Martian atmosphere. Its seasonal cycle plays an important role in atmospheric dynamics and climate. Formation of the polar CO<sub>2</sub> frost deposits results in up to 30% of atmospheric pressure variations as well as in dramatic change in surface reflectance and emissivity. Another case of carbon dioxide condensation is formation of a CO<sub>2</sub> clouds that are still poorly studied, despite the fact that they have been observed by a number of instruments [1−6] on the orbit of Mars.</p><p>In this work, we will present first results of CO<sub>2</sub> clouds observations from a combination of thermal-infrared (1.7−17 µm) and near-infrared (0.7-1.6 µm) spectra measured by TIRVIM and NIR instruments onboard the ExoMars Trace Gas Orbiter (TGO) in solar occultation geometry. These instruments are part of the Atmospheric Chemistry Suite (ACS), a set of three spectrometers (NIR, MIR, and TIRVIM) that is conducting scientific measurements on the orbit of Mars since the spring of 2018 [7].</p><p>This work was funded by Russian Science Foundation, grant number 20-42-09035.</p><p><strong>References</strong></p><p>[1] Montmessin et al. (2006). Subvisible CO2 ice clouds detected in the mesosphere of Mars. Icarus, 183, 403–410. https://doi.org/10.1016/j.icarus.2006.03.015</p><p>[2] Montmessin et al. (2007). Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. Journal of Geophysical Research, 112, E11S90. https://doi.org/10.1029/2007JE002944</p><p>[3] Määttänen et al. (2010). Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus, 209, 452–469. https://doi.org/10.1016/j.icarus.2010.05.017</p><p>[4] McConnochie et al. (2010). THEMIS-VIS observations of clouds in the Martian mesosphere: Altitudes, wind speeds, and decameter-scale morphology. Icarus, 210, 545–565. https://doi.org/10.1016/j.icarus.2010.07.021</p><p>[5] Vincendon et al. (2011). New near-IR observations of mesospheric CO2 and H2O clouds on Mars. Journal of Geophysical Research, 116, E00J02. https://doi.org/10.1029/2011JE003827</p><p>[6] Jiang et al., (2019). Detection of Mesospheric CO 2 Ice Clouds on Mars in Southern Summer. Geophysical Research Letters, 46(14), 7962–7971. https://doi.org/10.1029/2019GL082029</p><p>[7] Korablev et al., (2018). The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev. 214, 7. doi:10.1007/s11214-017-0437-6</p>


Icarus ◽  
2021 ◽  
Vol 353 ◽  
pp. 113229 ◽  
Author(s):  
K.S. Olsen ◽  
F. Forget ◽  
J.-B. Madeleine ◽  
A. Szantai ◽  
J. Audouard ◽  
...  

2009 ◽  
Vol 57 (8-9) ◽  
pp. 1022-1031 ◽  
Author(s):  
N. Mateshvili ◽  
D. Fussen ◽  
F. Vanhellemont ◽  
C. Bingen ◽  
E. Dekemper ◽  
...  

2021 ◽  
Author(s):  
Paul Streeter ◽  
Graham Sellers ◽  
Mike Wolff ◽  
Jon Mason ◽  
Manish Patel ◽  
...  

<p><strong>Introduction:</strong>  Suspended atmospheric aerosols are key components of the martian atmosphere, and their vertical distribution has long been a subject of investigation with orbital observations and modelling. The aerosols found in Mars' atmosphere are mineral dust, water ice, and CO<sub>2</sub> ice, and each have distinct spatiotemporal distributions and radiative effects.</p> <p>Of particular interest for this study is the vertical distribution of atmospheric aerosols. In recent years, dust has been observed to have a more complex vertical distribution structure than previously thought, with the detection of detached dust layers [1] and large plume-like structures during Global Dust Storms (GDS) [2].</p> <p>Water ice distribution is tied to the seasonal behaviour of its associated cloud formations, with seasonally recurring features including the aphelion cloud belt (ACB) [3] and polar hood clouds [4] at tropospheric altitudes, as well as higher altitude mesospheric (>40 km) clouds during Mars’ perihelion season [5] as well as during GDS [6,7].</p> <p>Mars’ low atmospheric temperatures also enable the formation of CO<sub>2</sub> ice clouds, which have been detected at mesospheric altitudes over the tropics/subtropics and generally during the colder aphelion season [5,8]. These are thought to be more ephemeral than their water ice counterparts, with lifetimes as low as minutes [9]. More persistent and optically thicker CO2 ice clouds have been detected at tropospheric altitudes in the polar night [10].</p> <p> The Ultraviolet and Visible (UVIS) Spectrometer [11], part of the Nadir and Occultation for MArs Discovery (NOMAD) spectrometer suite aboard the ExoMars Trace Gas Orbiter (TGO) [12], has now observed the martian atmospheric limb via solar occultations for over 1.5 martian years. This period covers the 2018/Mars Year (MY) 34 GDS and regional dust storm, as well as the entirety of the more typical MY 35. As such, UVIS solar occultation data provides a great opportunity to examine Mars’ vertical aerosol structure.</p> <p><strong>Results: </strong>We present a new UVIS occultation opacity profile dataset, openly available for use by the community. We also discuss particular features of interest in the dataset, and interpret these features by reference to previous published work and by comparison with the MGCM. In particular,<strong> </strong>we focus on notable mesospheric water ice cloud phenomena observed in both MY 34 and MY 35. We describe the spatiotemporal distribution of these features, and the link between specific water ice features and strong atmospheric dust activity from global and regional storms. The MGCM temperature and aerosol opacity fields provide valuable points of comparison with the UVIS dataset, for the purposes of both explanation and validation of the MGCM’s existing parametrizations. The UVIS dataset offers opportunities for further research into the vertical aerosol structure of the martian atmosphere, and improvement of how this is represented in numerical models.</p> <p><strong>References:</strong> [1] Heavens, N. G. et al (2011) <em>JGR (Planets), 116(E4), </em>E04003. [2] Heavens, N. G. et al (2019) <em>GRL, 124</em>(11), 2863-2892. [3] Smith M. D. (2008) <em>Annu. Rev. Earth Planet Sci, 26, </em>191-219. [4] Wang, H. & Ingersoll, A. P. (2002) <em>JGR (Planets), 107(E10), </em>8-1-8-16. [5] Clancy, R. T. et al (2019) <em>Icarus, 328, </em>246-273. [6] Liuzzi G. et al (2020) <em>JGR (Planets), 125</em>(4). [7] Stcherbinine, A. et al (2020) <em>JGR (Planets), 125</em>(3). [8] Aoki, S. et al (2018) <em>Icarus, 302, </em>175-190. [9] Listowski, C. et al (2014) <em>Icarus, 237, </em>239-261. [10] Hayne, P. O. et al (2012) <em>JGR (Planets), 117</em>(E8). [11] Patel, M. R. et al (2017) <em>Appl. Opt., 56</em>(10), 2771-2782. [12] Vandaele, A. C. et al (2015) <em>Planet. Space Sci., 119</em>, 233-249.</p>


Author(s):  
Anni Määttänen ◽  
Franck Montmessin

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.


2020 ◽  
Author(s):  
Anna Fedorova ◽  
Franck Montmessin ◽  
Oleg Korablev ◽  
Mikhail Luginin ◽  
Alexander Trokhimovskiy ◽  
...  

<p>The water vapour vertical distribution is an eloquent gauge of the relative roles of the various sources, sinks and processes that control the Martian water cycle. However, its behaviour is still poorly studied while it is instrument for our understanding of the loss of water from Mars to space, which results from the transport of water to the upper atmosphere where it is disassociated to hydrogen atoms that later escape. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution with altitude. Here we present results of the Atmospheric Chemistry Suite (ACS) instrument NIR channel for the first year of TGO observations covering the almost full year from Ls 160° of the Martian year 34 (April 2018) to Ls 130° of the Martian year 35 (January 2020). Simultaneous measurements of the water vapour mixing ratio, temperature and dust vertical distribution and formation of water ice clouds allow us to constrain the complex water behaviour and estimate the saturation state of H2O. Water profiles during the 2018-2019 southern spring and summer stormy seasons show that high altitude water is preferentially supplied close to perihelion and that large supersaturation occurs even when clouds are present. Here we attempt to complete the story by studying water vapor during the northern spring and summer to explore whether saturation impacts water transport between hemispheres in this season. The data analysis of MY35 was supported by RSF (project No. 20-42-09035).</p>


Icarus ◽  
1993 ◽  
Vol 102 (2) ◽  
pp. 261-285 ◽  
Author(s):  
Diane V. Michelangeli ◽  
Owen B. Toon ◽  
Robert M. Haberle ◽  
James B. Pollack

Sign in / Sign up

Export Citation Format

Share Document