scholarly journals Time evolutions of various radiative forcings for the past 150 years estimated by a general circulation model

2006 ◽  
Vol 33 (19) ◽  
Author(s):  
Toshihiko Takemura ◽  
Yoko Tsushima ◽  
Tokuta Yokohata ◽  
Toru Nozawa ◽  
Tatsuya Nagashima ◽  
...  
1970 ◽  
Vol 9 (1-2) ◽  
pp. 143-154 ◽  
Author(s):  
MA Rouf ◽  
MK Uddin ◽  
SK Debsarma ◽  
M Mizanur Rahman

The past, present and future climatic pattern (temperature and rainfall) of northwestern and southwestern part of Bangladesh was assessed based on the High Resolution Atmospheric-Ocean General Circulation Model (AOGCM) using the present rainfall and temperature data of the Bangladesh Meteorological Department (BMD). Climatology in Bangladesh is derived from 20 km mesh MRI-AGCM (Atmospheric General Circulation Model) calibrated with reference to the observed data for the period of 1979-2006. Then, projections for rainfall and temperature are made for near future (2015-2034) and future (2075-99). Two disaster prone areas (i) northwestern part (Shapahar & Porsha) and (ii) southwestern part (Kalapara & Amtoli) were selected as the study areas. AOGCM model was run for Bangladesh and also for study areas separately. The present mean temperature for Bangladesh was found to rise from the past, rises slightly, but in near future and future the rate of mean temperature rise is projected to be much more than the present rate (increase up to 4.34 °C/100 years), the rate is projected to be 5.39 °C/100 years in case of Shapahar and Porsha a while 4.37 °C/100 years in case of Kalapara and Amtoli. The present, near future and future average rainfall of Bangladesh appeared to fluctuate, but have shown a decreasing trend (decreases up to 1.96 mm/100 years). The mean average rainfall of Shapahar and Porsha presently decreases very slowly (not significant), but in near future and future will decrease slowly (0.66mm/100 years). In case of Kalapara, the average rainfall appears to decrease presently, near future and future will decrease up to 3.62 mm/100 years. The average rainfall of Amtoli appears to decrease @ 1.92mm/100 years but in near future appears to increase slightly and again decrease @ 3.27mm/100years in future. Keywords: Atmosphere-Ocean General Circulation Model (AOGCM); climatology; simulation; temperature; rainfall DOI: http://dx.doi.org/10.3329/agric.v9i1-2.9489 The Agriculturists 2011; 9(1&2): 143-154


2020 ◽  
Author(s):  
Stefan Brönnimann ◽  
Ralf Hand ◽  
Jörg Franke ◽  
Andrey Martynov

<p>The recently started PALAEO-RA project aims at creating a new global monthly 3-dimensional reanalysis dataset of the past 600 years' climate. Large spatial and temporal gaps in the available historical data on these time scale make the climate history being an under-determined problem when using observations only. In PALAEO-RA we will addionally use information from an ensemble of simulations with an atmospheric general circulation model (AGCM). The model offers additional physical constraints. The model reproduces teleconnection patterns and reflects typical large-scale modes of variability to set the historical data into a physically consistent regional to global context.</p><p>In brief, the method that we plan to use consists of two steps: First, we are currently producing an  ensemble of historical simulations with the atmospheric general circulation model ECHAM6. Once finished, it will have a size of ca. 30 members, covering the period fom 1420 to present. The ensemble is supposed to reflect the range of realistic climate states under prescribed historical radiative forcings (based on the PMIP4 setup) and ocean boundary conditions (HadISST.2 & SST reconstructions by Samakinwa et al., see abstract EGU2020-8744).</p><p>Secondly, we will apply Ensemble Kalman Fitting, a technique for the offline assimilation of historical observations (instrumental observations, documentary data, tree ring width and other proxies), basing on the assumption that the occurrence of a distinct observation has a different probability depending on the meso- and large-scale circulation patterns of the atmosphere.</p><p>Our poster will give a brief overview on the project with a focus on introducing the AGCM ensemble, also to allow for discussions on further applications of the latter.</p>


Sign in / Sign up

Export Citation Format

Share Document