scholarly journals Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface

2007 ◽  
Vol 34 (3) ◽  
Author(s):  
Satoshi Ide ◽  
David R. Shelly ◽  
Gregory C. Beroza
2020 ◽  
Author(s):  
Jason P. Morgan ◽  
Albert de Montserrat Navarro ◽  
Paola Vannucchi ◽  
Alexander Peter Clarke ◽  
Audrey Ougier-Simonin ◽  
...  

<p>Non-volcanic tremor remains a poorly understood form of seismic activity. In its most common subduction zone setting, tremor typically occurs within the plate interface at or near the shallow and deep edges of the interseismically locked zone. Detailed seismic observations have shown that tremor is composed of repeating small low-frequency earthquakes (LFE), often accompanied by very-low-frequency earthquakes (VLF), all involving shear failure and slip. However, LFEs and VLFs within each cluster show nearly constant source durations for all observed magnitudes. This implies asperities of near-constant size,  with recent seismic observations hinting that the failure size is of order ~200m.  </p><p>We propose that geological observations and geomechanical lab measurements on heterogeneous rock assemblages representative of the shallow tremor region are most consistent with LFEs and VLFs involving the seismic failure of relatively weaker blocks within a stronger matrix.  Furthermore, in the shallow subducting rocks within a subduction shear channel, hydrothermal fluids and diagenesis have led to a strength inversion from the initial weak matrix with relatively stronger blocks to a stronger matrix with embedded relatively weaker blocks.  In this case, tremor will naturally occur as the now-weaker blocks fail seismically while their more competent surrounding matrix has not yet reached a state of general seismic failure, and instead only fails at local stress-concentrations around the tremorgenic blocks.</p><p>Here we use the recently developed code LaCoDe (de Monserrat et al., 2019) to create and explore a wide range of numerical experiments. These experiments are designed to characterize the  likely stress and strain accumulations that can develop in a heterogeneous subduction shear channel, and their implications for the genesis of tremor and its spatially associated seismic events.  In our previous modeling efforts we did not strongly vary either the block volume-fraction or the initial block and matrix geometry. Here we do both, and also explore a range of rock compressibilities ranging from seismically-inferred values to nearly incompressible behavior. We also explore models with irregular 'quasi-geological' initial block/matrix geometries. Drucker-Prager plasticity is used to characterize a fault-like mode of shear failure. This suite of experiments demonstrate that, for a wide range of block and matrix conditions,  the proposed strength-inversion mechanism can generate a mode of shallow tectonic tremor that clusters in spatially discontinuous swarms along the plate interface. At the deeper edge of the interseismically locked zone, channelised dehydration associated with subduction along a plate interface could induce a similar relative strength inversion, and thereby generate deep seated tremor.</p>


2021 ◽  
Author(s):  
Sara Klaasen ◽  
Patrick Paitz ◽  
Jan Dettmer ◽  
Andreas Fichtner

<p>We present one of the first applications of Distributed Acoustic Sensing (DAS) in a volcanic environment. The goals are twofold: First, we want to examine the feasibility of DAS in such a remote and extreme environment, and second, we search for active volcanic signals of Mount Meager in British Columbia (Canada). </p><p>The Mount Meager massif is an active volcanic complex that is estimated to have the largest geothermal potential in Canada and caused its largest recorded landslide in 2010. We installed a 3-km long fibre-optic cable at 2000 m elevation that crosses the ridge of Mount Meager and traverses the uppermost part of a glacier, yielding continuous measurements from 19 September to 17 October 2019.</p><p>We identify ~30 low-frequency (0.01-1 Hz) and 3000 high-frequency (5-45 Hz) events. The low-frequency events are not correlated with microseismic ocean or atmospheric noise sources and volcanic tremor remains a plausible origin. The frequency-power distribution of the high-frequency events indicates a natural origin, and beamforming on these events reveals distinct event clusters, predominantly in the direction of the main peaks of the volcanic complex. Numerical examples show that we can apply conventional beamforming to the data, and that the results are improved by taking the signal-to-noise ratio of individual channels into account.</p><p>The increased data quantity of DAS can outweigh the limitations due to the lower quality of individual channels in these hazardous and remote environments. We conclude that DAS is a promising tool in this setting that warrants further development.</p>


2010 ◽  
Vol 37 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Maceira ◽  
C. A. Rowe ◽  
G. Beroza ◽  
D. Anderson

2021 ◽  
Author(s):  
Ayumi Kinjo ◽  
Mamoru Nakamura

Abstract Tremors and low-frequency earthquakes (LFEs), which occur in the plate interface, can provide useful information about the state of aseismic stress transfer in mega-earthquake fault zones. We estimated the distribution of stress sensitivity in the subducted plate interface by using triggered LFEs. Specifically, we detected LFEs in the Ryukyu Trench triggered by the surface waves of large teleseismic earthquakes by using the waveform records of broadband and short-period seismometers installed in the Ryukyu Arc. We selected a total of 45 teleseismic earthquakes with magnitudes of more than 7.5, which occurred between 2004 and 2017, for the analysis. We could detect the triggered LFEs for five teleseismic earthquakes. Then, we determined the hypocenters of LFEs by using the relative arrival times of LFEs for each station. The LFEs were distributed in the south of Okinawa Island and the Yaeyama area. Moreover, they were distributed around the source fault of the slow slip events. These were almost the same as the position of LFEs accompanying very low-frequency earthquakes (VLFEs). However, the epicenters of the triggered LFEs were concentrated near the locations of the most active LFE clusters accompanying VLFEs. This suggests that the sensitivity for inducing LFEs was higher near the most active clusters of the LFEs accompanying the VLFEs. The amplitudes of the triggered LFEs were proportional to the peak ground velocity of the surface waves. This indicates that the LFEs accompanying VLFEs are activated by stress acceleration in the Yaeyama and Okinawa areas and the triggered LFEs observed in these areas can be a result of the activation of the ambient tremors due to increased stress.


2018 ◽  
Vol 40 (3) ◽  
pp. 1150 ◽  
Author(s):  
A. Kolaitis ◽  
P. Papadimiriou ◽  
I. Kassaras ◽  
K. Makropoulos

Two arrays equipped with broadband sensors were installed for a period of 10 months, in order to study the seismic activity in the area of Santorini (Thira) volcano. During these periods, about 330 earthquakes were recorded and located within a radius of 50 km from the center of the caldera. An iterative damped traveltime inversion procedure yielded a local 1-D Ρ-wave velocity model and improved locations with an accuracy better than 5 Km in both horizontal and vertical components for 135 earthquakes. Those are mainly distributed within a depth range 5-18 Km, in the vicinity of the submarine Kolumbo Reef (NE of Santorini Island). Signal analysis of the recorded volcanic earthquakes including typical Fourier transformations and several operations in the time-frequency domain, allowed their dominant frequency determination and their classification into three groups based on waveform appearance and frequency content: (1) highfrequency events; (2) low-frequency events; and (3) volcanic tremor. Frequencytime analysis of tremor, detected at three stations, revealed two kinds of harmonic tremor with one sharp peak, at 3-5 Hz and 8.5-10 Hz.


2021 ◽  
Author(s):  
Hui Huang ◽  
Jessica Hawthorne

<p>Previous studies suggest that all LFEs could be roughly the same size; most LFE durations are between 0.2 and 0.5 s, and most LFE moments fall within a 1 to 2-magnitude unit range. These apparently characteristic LFE sizes could imply that LFEs are hosted on asperities of a characteristic size on the plate interface.  However, it is also possible that LFEs with a range of sizes do occur but are not detected. With existing methods, it is usually harder to detect LFEs with shorter or longer durations. In this study, we search for LFEs with various durations near Parkfield, California. We generate synthetic LFE templates with durations  of 0.05 - 1 s by modifying Shelly (2017)’s template waveforms. We cross-correlate time-shifted versions of the templates with 500 days of seismic data to search for LFEs within 5 km of the original template location. We estimate the duration and location of each detection by associating the detection with the template that it matches best. </p><p>Our preliminary results are encouraging. We find large numbers of 0.2-s LFEs at the original location, as have been detected previously, but we also appear to detect LFEs with durations of 0.05 - 1 s. These new detections appear to be spread along 1 3-km region on a near-vertical plane that matches the downward extension of regular seismicity. We are currently cautious in interpreting these results, as it remains possible that all the LFEs occur at the original location with the same duration and that our apparent range of detections simply reflects scatter introduced by noisy data. Nevertheless, we note that our initial analysis implies that LFE duration in Parkfield changes minimally with LFE moment, and we are continuing to more rigorously assess the LFEs’ properties and their implications.</p><p></p>


Science ◽  
2017 ◽  
Vol 355 (6320) ◽  
pp. 45-48 ◽  
Author(s):  
David Fee ◽  
Matthew M. Haney ◽  
Robin S. Matoza ◽  
Alexa R. Van Eaton ◽  
Peter Cervelli ◽  
...  

The March 2016 eruption of Pavlof Volcano, Alaska, produced an ash plume that caused the cancellation of more than 100 flights in North America. The eruption generated strong tremor that was recorded by seismic and remote low-frequency acoustic (infrasound) stations, including the EarthScope Transportable Array. The relationship between the tremor amplitudes and plume height changes considerably between the waxing and waning portions of the eruption. Similar hysteresis has been observed between seismic river noise and discharge during storms, suggesting that flow and erosional processes in both rivers and volcanoes can produce irreversible structural changes that are detectable in geophysical data. We propose that the time-varying relationship at Pavlof arose from changes in the tremor source related to volcanic vent erosion. This relationship may improve estimates of volcanic emissions and characterization of eruption size and intensity.


2013 ◽  
Vol 65 (9) ◽  
pp. 1047-1051 ◽  
Author(s):  
Ryosuke Ishida ◽  
Yoshihiro Hiramatsu ◽  
Takanori Matsuzawa ◽  
Kazushige Obara

Nature ◽  
2007 ◽  
Vol 446 (7133) ◽  
pp. 305-307 ◽  
Author(s):  
David R. Shelly ◽  
Gregory C. Beroza ◽  
Satoshi Ide

Sign in / Sign up

Export Citation Format

Share Document