scholarly journals Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change

2008 ◽  
Vol 113 (D5) ◽  
pp. n/a-n/a ◽  
Author(s):  
C. L. Heald ◽  
D. K. Henze ◽  
L. W. Horowitz ◽  
J. Feddema ◽  
J.-F. Lamarque ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.



2008 ◽  
Author(s):  
Min Ji Park ◽  
Yong Jun Lee ◽  
Hyung Jin Shin ◽  
Seong Joon Kim


2021 ◽  
Author(s):  
Ernest Asamoah ◽  
Linda Beaumont ◽  
Joesph M Maina

Abstract Expanding protected area networks and enhancing their capacities is currently one avenue at the forefront of efforts to conserve and restore global biodiversity. Climate and habitat loss resulting from land use interact synergistically to undermine the potential benefits of protected areas (PAs). Targeting conservation, adaptation and mitigation efforts requires an understanding of patterns of climate and land-use change within the current arrangement of PAs, and how these might change in the future. In this paper, we provide this understanding using predicted rates of temporal and spatial displacement of future climate and land use globally and within PAs. We show that ~ 47% of the world’s PAs—10.6% of which are under restrictive management—are located in regions that will likely experience both climate stress and land-use instability by 2050. The vast majority of these PAs are also distributed across moist biomes and in high conservation value regions, and fall into less-restrictive management categories. The differential impacts of combined land use and climate velocity across protected biomes indicate that climate and land-use change may have fundamentally different ecological and management consequences at multiple scales. Taken together, our findings can inform spatially adaptive natural resource management and actions to achieve sustainable development and biodiversity goals.



2019 ◽  
Vol 7 (8) ◽  
pp. 993-1017 ◽  
Author(s):  
Fabio Farinosi ◽  
Mauricio E. Arias ◽  
Eunjee Lee ◽  
Marcos Longo ◽  
Fabio F. Pereira ◽  
...  


2014 ◽  
Vol 14 (19) ◽  
pp. 26297-26348
Author(s):  
S. D. D'Andrea ◽  
J. C. Acosta Navarro ◽  
S. C. Farina ◽  
C. E. Scott ◽  
A. Rap ◽  
...  

Abstract. Emissions of biogenic volatile organic compounds (BVOC) have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. Recent model reconstructions of BVOC emissions over the past millennium predicted changes in dominant secondary organic aerosol (SOA) producing BVOC classes (isoprene, monoterpenes and sesquiterpenes). The reconstructions predicted that global isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction), while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases); however, all three show regional variability due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols) held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in direct plus indirect aerosol radiative effect of >0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a~largely overlooked and important anthropogenic aerosol effect on regional climates.



2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jialei Zhu ◽  
Joyce E. Penner ◽  
Fangqun Yu ◽  
Sanford Sillman ◽  
Meinrat O. Andreae ◽  
...  


Land ◽  
2016 ◽  
Vol 5 (4) ◽  
pp. 46 ◽  
Author(s):  
Alison Rothwell ◽  
Brad Ridoutt ◽  
William Bellotti


Sign in / Sign up

Export Citation Format

Share Document