scholarly journals An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring

2008 ◽  
Vol 113 (D5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman ◽  
V. Krishnamurthy
2020 ◽  
Author(s):  
Yaqi Wang ◽  
Juan Feng ◽  
Jianping Li ◽  
Ran An ◽  
Lanning Wang

<p>The variability of boreal spring Hadley circulation (HC) over the Asian monsoon domain over the last four decades is explored. The climatological distribution of the regional HC is symmetric of the equator, with the ascending branch around the equator and sinking branch around the subtropics in each hemisphere. The first dominant mode (EOF1) of the regional HC is equatorial asymmetric, with the main body in the Southern Hemisphere (SH) and the ascending branch to the north of the equator. This mode is mainly characterized by interannual variation and is related to El Niño-Southern Oscillation (ENSO). Significant negative sea surface temperature (SST) anomalies are observed over the tropical Indian Ocean (TIO) along with the development of La Niña events; however, the magnitude of SST anomalies in the southern Indian Ocean is greater than that in the northern counterpart, contributing to EOF1 formation. The spatial distribution of the second dominant mode (EOF2) is with the main body lying in the Northern Hemisphere (NH) and the ascending branch located to the south of the equator. The temporal variation of this mode is connected to the warming of the TIO. The warming rate of the southern TIO SST is faster than that in the northern counterpart, resulting in the southward migration of the rising branch. The above result indicates the critical role of the meridional distribution of SST on the variability of the regional HC.</p>


2010 ◽  
Vol 67 (6) ◽  
pp. 1965-1982 ◽  
Author(s):  
Min Wen ◽  
Tim Li ◽  
Renhe Zhang ◽  
Yanjun Qi

Abstract The structure and evolution features of the quasi-biweekly (10–20 day) oscillation (QBWO) in boreal spring over the tropical Indian Ocean (IO) are investigated using 27-yr daily outgoing longwave radiation (OLR) and the National Centers for Environment Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. It is found that a convective disturbance is initiated over the western IO and moves slowly eastward. After passing the central IO, it abruptly jumps into the eastern IO. Meanwhile, the preexisting suppressed convective anomaly in the eastern IO moves poleward in the form of double-cell Rossby gyres. The analysis of vertical circulation shows that a few days prior to the onset of local convection in the eastern equatorial IO an ascending motion appears in the boundary layer. Based on the diagnosis of the zonal momentum equation, a possible boundary layer–triggering mechanism over the eastern equatorial IO is proposed. The cause of the boundary layer convergence and vertical motion is attributed to the free-atmospheric divergence in association with the development of the barotropic wind. It is the downward transport of the background mean easterly momentum by perturbation vertical motion during the suppressed convective phase of the QBWO that leads to the generation of a barotropic easterly—the latter of which further causes the free-atmospheric divergence and, thus, the boundary layer convergence. The result suggests that the local process, rather than the eastward propagation of the disturbance from the western IO, is essential for the phase transition of the QBWO convection over the eastern equatorial IO.


2014 ◽  
Vol 11 (3) ◽  
pp. 3111-3136 ◽  
Author(s):  
C. Funk ◽  
A. Hoell ◽  
S. Shukla ◽  
I. Bladé ◽  
B. Liebmann ◽  
...  

Abstract. In southern Ethiopia, Eastern Kenya, and southern Somalia, poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts in that region to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we show that the two dominant modes of East African boreal spring rainfall variability are tied, respectively, to western-central Pacific and central Indian Ocean SST. Variations in these rainfall modes can be predicted using two previously defined SST indices – the West Pacific Gradient (WPG) and Central Indian Ocean index (CIO), with the WPG and CIO being used, respectively, to predict the first and second rainfall modes. These simple indices can be used in concert with more sophisticated coupled modeling systems and land surface data assimilations to help inform early warning and guide climate outlooks.


2021 ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu-Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

<p>Using the Gauss–Markov decomposition method, this study investigates the mean structure and seasonal variation of the tropical gyre in the Indian Ocean based on the observations of surface drifters. In the climatological mean, the clockwise tropical gyre consists of the equatorial Wyrtki Jets (WJs), the South Equatorial Current (SEC), and the eastern and western boundary currents. This gyre system redistributes the water mass over the entire tropical Indian Ocean basin. Its variations are associated with the monsoon transitions, featuring a typical clockwise pattern in the boreal spring and fall seasons. The relative importance of the geostrophic and Ekman components of the surface currents as well as the role of eddy activity were further examined. It was found that the geostrophic component dominates the overall features of the tropical gyre, including the SEC meandering, the broad eastern boundary current, and the axes of the WJs in boreal spring and fall, whereas the Ekman component strengthens the intensity of the WJs and SEC. Eddies are active over the southeastern tropical Indian Ocean and transport a warm and fresh water mass westward, with direct impact on the southern branch of the tropical gyre. In particular, the trajectories of drifters reveal that during strong Indian Ocean Dipole or El Niño-Southern Oscillation events, long-lived eddies were able to reach the southwestern Indian Ocean with a moving speed close to that of the first baroclinic Rossby waves.</p>


2018 ◽  
Vol 3 (4) ◽  
pp. 157
Author(s):  
Wijaya Mardiansyah ◽  
Dedi Setiabudidaya ◽  
M. Yusup Nur Khakim ◽  
Indra Yustian ◽  
Zulkifli Dahlan ◽  
...  

The southern Sumatera region experiences one rainy season and one dry season in a year associated with seasonal change in monsoonal winds. The peak of rainy season is occurring in November-December-January during the northwest monsoon season, while the dry season comes in June-July-August during the southeast monsoon season. This study is designed to evaluate possible influence of the coupled ocean-atmospheric modes in the tropical Indo-Pacific region, namely the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) on the rainfall variability over the catchment area of the Music Basin, South Sumatera. The ENSO and IOD occurrences were reflected by the variability of sea surface temperature (SST) in the tropical Pacific and Indian Ocean, respectively. During El Niño and/or positive IOD episode, negative SST anomalies cover the eastern tropical Indian Ocean and western tropical Pacific including the Indonesian seas, leading to suppress convective activities that result in reduce precipitation over the maritime continent. The situation is reversed during La Niña and/or negative IOD event. The results revealed that the high topography area (e.g. Bukit Barisan) was shown to be instrumental to the pattern of rainfall variability. During the 2010 negative IOD co-occurring with La Niña event, the rainfall was significantly increase over the region. This excess rainfall was associated with warm SST anomaly over the eastern tropical Indian Ocean and the Indonesian seas. On the other hand, extreme drought event tends to occur during the 2015 positive IOD simultaneously with the occurrence of the El Niño events Investigation on the SST patterns revealed that cold SST anomalies covered the Indonesian seas during the peak phase of the 2015 positive IOD and El Niño event.


2007 ◽  
Vol 20 (13) ◽  
pp. 3320-3343 ◽  
Author(s):  
Roxana C. Wajsowicz

Abstract Whether seasonally phased-locked persistence and predictability barriers, similar to the boreal spring barriers found for El Niño–Southern Oscillation (ENSO), exist for the tropical Indian Ocean sector climate is investigated using observations and hindcasts from two coupled ocean–atmosphere dynamical ensemble forecast systems: the National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) for 1990–2003, and the NASA Seasonal-to-Interannual Prediction Project (NSIPP) system for 1993–2002. The potential predictability of the climate is also assessed under the “perfect model/ensemble” assumption. Lagged correlations of the indices calculated over the east and west poles of the Indian Ocean dipole mode (IDM) index show weak sea surface temperature anomaly (SSTA) persistence barriers in boreal spring at both poles, but the major decline in correlation at the east pole occurs in boreal midwinter for all start months with an almost immediate recovery, albeit negative correlations, until summer approaches. Processes responsible for the change in sign of SSTAs associated with a major IDM event effect a similar change on much weaker SSTAs. At the west pole, a major decline occurs at the end of boreal summer for fall and winter starts when the thermocline deepens with the seasonal cycle and coupling between the ocean and atmosphere is weak. A decline in skillful prediction of SSTA at the east pole over boreal winter is also found in the hindcasts, but the relatively large thermocline depth anomalies are skillfully predicted through this time and skill in SSTA prediction returns. A predictability barrier at the onset of the boreal summer monsoon is found at both IDM poles with some return of skill in late fall. Potential predictability calculations suggest that this barrier may be overcome at the west pole with improvements to the forecast systems, but not at the east pole for forecasts initiated in boreal winter unless the ocean is initialized with a memory of fall conditions.


2012 ◽  
Vol 40 (5-6) ◽  
pp. 1467-1481 ◽  
Author(s):  
Soumi Chakravorty ◽  
J. S. Chowdary ◽  
C. Gnanaseelan

Sign in / Sign up

Export Citation Format

Share Document