scholarly journals Global identification of warm cloud microphysical processes with combined use of A-Train observations

2008 ◽  
Vol 35 (8) ◽  
Author(s):  
Kentaroh Suzuki ◽  
Graeme L. Stephens
2020 ◽  
Vol 13 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
Dennis Niedermeier ◽  
Jens Voigtländer ◽  
Silvio Schmalfuß ◽  
Daniel Busch ◽  
Jörg Schumacher ◽  
...  

Abstract. The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.


2020 ◽  
Author(s):  
Annette K. Miltenberger ◽  
Paul R. Field ◽  
Adrian H. Hill

Abstract. Orographic wave clouds offer a natural laboratory to investigate cloud microphysical processes and their representation in atmospheric models. Wave clouds impact the larger-scale flow by the vertical redistribution of moisture and aerosol. Here we use detailed cloud microphysical observations from the ICE-L campaign to evaluate the recently developed Cloud Aerosol Interacting Microphysics (CASIM) module in the Met Office Unified Model (UM) with a particular focus on different parameterisations for heterogeneous freezing. Modelled and observed thermodynamic and microphysical properties agree very well (deviation of air temperature


2019 ◽  
Author(s):  
Dennis Niedermeier ◽  
Jens Voigtländer ◽  
Silvio Schmalfuß ◽  
Daniel Busch ◽  
Jörg Schumacher ◽  
...  

Abstract. The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last ten years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions, and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present an unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25 °C > T > −40 °C). The continuous-flow design of the facility allows for the investigation of processes occurring on small time (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The experimental studies using LACIS-T are accompanied and complemented by Computational Fluid Dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model as well as results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel combining both characterization measurements and numerical simulations. Finally, first results are depicted from deliquescence/hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.


2018 ◽  
Author(s):  
Jiayu Xu ◽  
Jiachen Zhang ◽  
Junfeng Liu ◽  
Kan Yi ◽  
Songlin Xiang ◽  
...  

Abstract. Parameterizations that impact wet removal of black carbon remain uncertain in global climate models. In this study, we enhance the default wet deposition scheme for BC in the Community Earth System Model (CESM) to (a) add relevant physical processes that were not resolved in the default model, and (b) facilitate understanding of the relative importance of various cloud processes on BC distributions. We find that the enhanced scheme greatly improves model performance against HIPPO observations relative to the default scheme. We find that convection scavenging, aerosol activation, ice nucleation, evaporation of rain/snow, and below cloud scavenging dominate wet deposition of BC. BC conversion rates for processes related to in-cloud water/ice conversion (i.e., riming, the Bergeron processes, and evaporation of cloud water sedimentation) are relatively smaller, but have large seasonal variations. We also conduct sensitivity simulations that turn off each cloud process one at a time to quantify the influence of cloud processes on BC distributions and radiative forcing. Convective scavenging is found to most significantly influence BC concentrations at mid-altitudes over the tropics and even globally. In addition, BC is sensitive to all cloud processes over the Northern Hemisphere at high latitudes. As for BC vertical distributions, convective scavenging has a dominant influence. Aerosol activation mainly increases the fraction of column BC below 5 km whereas ice nucleation decreases that above 10 km. During wintertime, the Bergeron process also significantly increases BC concentrations at lower altitudes over the Arctic. Our simulation yields a global BC burden of 85 Gg; corresponding direct radiative forcing (DRF) of BC estimated using the Parallel Offline Radiative Transfer (PORT) is 0.13 W m−2, much lower than previous studies. The range of DRF derived from sensitivity simulations is large, 0.09–0.33 W m−2, corresponding to BC burdens varying from 73 Gg to 151 Gg. Due to differences in BC vertical distributions among each sensitivity simulation, fractional changes in DRF (relative to the baseline simulation) are always higher than fractional changes in BC burdens; this occurs because relocating BC in the vertical influences the radiative forcing per BC mass. Our results highlight the influences of cloud microphysical processes on BC concentrations and radiative forcing.


Sign in / Sign up

Export Citation Format

Share Document