scholarly journals Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds

2020 ◽  
Author(s):  
Annette K. Miltenberger ◽  
Paul R. Field ◽  
Adrian H. Hill

Abstract. Orographic wave clouds offer a natural laboratory to investigate cloud microphysical processes and their representation in atmospheric models. Wave clouds impact the larger-scale flow by the vertical redistribution of moisture and aerosol. Here we use detailed cloud microphysical observations from the ICE-L campaign to evaluate the recently developed Cloud Aerosol Interacting Microphysics (CASIM) module in the Met Office Unified Model (UM) with a particular focus on different parameterisations for heterogeneous freezing. Modelled and observed thermodynamic and microphysical properties agree very well (deviation of air temperature

2013 ◽  
Vol 6 (3) ◽  
pp. 4183-4221 ◽  
Author(s):  
J. Henneberger ◽  
J. P. Fugal ◽  
O. Stetzer ◽  
U. Lohmann

Abstract. Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener–Bergeron–Findeisen (WBF) process.


2020 ◽  
Vol 20 (13) ◽  
pp. 7979-8001
Author(s):  
Annette K. Miltenberger ◽  
Paul R. Field ◽  
Adrian H. Hill ◽  
Andrew J. Heymsfield

Abstract. Orographic wave clouds offer a natural laboratory to investigate cloud microphysical processes and their representation in atmospheric models. Wave clouds impact the larger-scale flow by the vertical redistribution of moisture and aerosol. Here we use detailed cloud microphysical observations from the Ice in Clouds Experiment – Layer Clouds (ICE-L) campaign to evaluate the recently developed Cloud Aerosol Interacting Microphysics (CASIM) module in the Met Office Unified Model (UM) with a particular focus on different parameterizations for heterogeneous freezing. Modelled and observed thermodynamic and microphysical properties agree very well (deviation of air temperature <1 K; specific humidity <0.2 g kg−1; vertical velocity <1 m s−1; cloud droplet number concentration <40 cm−3), with the exception of an overestimated total condensate content and too long a sedimentation tail. The accurate reproduction of the environmental thermodynamic and dynamical wave structure enables the model to reproduce the right cloud in the right place and at the right time. All heterogeneous freezing parameterizations except Atkinson et al. (2013) perform reasonably well, with the best agreement in terms of the temperature dependency of ice crystal number concentrations for the parameterizations of DeMott et al. (2010) and Tobo et al. (2013). The novel capabilities of CASIM allowed testing of the impact of assuming different soluble fractions of dust particles on immersion freezing, but this is found to only have a minor impact on hydrometeor mass and number concentrations. The simulations were further used to quantify the modification of moisture and aerosol profiles by the wave cloud. The changes in both variables are on order of 15 % of their upstream values, but the modifications have very different vertical structures for the two variables. Using a large number of idealized simulations we investigate how the induced changes depend on the wave period (100–1800 s), cloud top temperature (−15 to −50 ∘C), and cloud thickness (1–5 km) and propose a conceptual model to describe these dependencies.


2017 ◽  
Author(s):  
Martin Schnaiter ◽  
Emma Järvinen ◽  
Ahmed Abdelmonem ◽  
Thomas Leisner

Abstract. The novel aircraft optical cloud probe PHIPS-HALO has been developed to establish clarity regarding the fundamental link between the microphysical properties of single atmospheric ice particles and their appropriated angular light scattering function. After final improvements have been implemented to the polar nephelometer part and the acquisition software of PHIPS-HALO, the instrument was comprehensively characterized in the laboratory and was deployed in two aircraft missions targeting cirrus and Arctic mixed-phase clouds. This work demonstrates the proper function of the instrument under aircraft conditions and highlights the uniqueness, quality, and limitations of the data that can be expected from PHIPS-HALO in cloud-related aircraft missions.


2008 ◽  
Vol 88 (3-4) ◽  
pp. 266-276 ◽  
Author(s):  
André Ehrlich ◽  
Manfred Wendisch ◽  
Eike Bierwirth ◽  
Andreas Herber ◽  
Alfons Schwarzenböck

2021 ◽  
Vol 13 (24) ◽  
pp. 5001
Author(s):  
Eleni Marinou ◽  
Kalliopi Artemis Voudouri ◽  
Ioanna Tsikoudi ◽  
Eleni Drakaki ◽  
Alexandra Tsekeri ◽  
...  

In this work, collocated lidar–radar observations are used to retrieve the vertical profiles of cloud properties above the Eastern Mediterranean. Measurements were performed in the framework of the PRE-TECT experiment during April 2017 at the Greek atmospheric observatory of Finokalia, Crete. Cloud geometrical and microphysical properties at different altitudes were derived using the Cloudnet target classification algorithm. We found that the variable atmospheric conditions that prevailed above the region during April 2017 resulted in complex cloud structures. Mid-level clouds were observed in 38% of the cases, high or convective clouds in 58% of the cases, and low-level clouds in 2% of the cases. From the observations of cloudy profiles, pure ice phase occurred in 94% of the cases, mixed-phase clouds were observed in 27% of the cases, and liquid clouds were observed in 8.7% of the cases, while Drizzle or rain occurred in 12% of the cases. The significant presence of Mixed-Phase Clouds was observed in all the clouds formed at the top of a dust layer, with three times higher abundance than the mean conditions (26% abundance at −15 °C). The low-level clouds were formed in the presence of sea salt and continental particles with ice abundance below 30%. The derived statistics on clouds’ high-resolution vertical distributions and thermodynamic phase can be combined with Cloudnet cloud products and lidar-retrieved aerosol properties to study aerosol-cloud interactions in this understudied region and evaluate microphysics parameterizations in numerical weather prediction and global climate models.


2021 ◽  
Author(s):  
Maximilian Dollner ◽  
Josef Gasteiger ◽  
Manuel Schöberl ◽  
Glenn Diskin ◽  
T. Paul Bui ◽  
...  

&lt;p&gt;Clouds are an important contributor to the uncertainty of future climate predictions, partly because cloud microphysical processes are still not fully understood. Interhemispheric observations, providing a dataset to investigate these cloud microphysical processes, are surprisingly rare - in particular observations using the same instrumentation on a global scale.&lt;/p&gt;&lt;p&gt;Between 2016 and 2018, the ATom (Atmospheric Tomography; 2016-2018) mission and the A-LIFE (Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics; 2017) field experiment performed extensive airborne in-situ measurements of aerosol and cloud microphysical properties in the atmosphere up to approx. 13km altitude on a global scale. Profiling of the remote atmosphere over the Pacific and Atlantic Oceans from about 80&amp;#176;N to 86&amp;#176;S during ATom and systematic sampling of the region in the Mediterranean during A-LIFE provides a combined dataset of nearly 60h of measurements inside clouds.&lt;/p&gt;&lt;p&gt;We developed a novel cloudindicator algorithm, which utilizes measurements of a second-generation Cloud, Aerosol and Precipitation Spectrometer (CAPS, Droplet Measurement Technologies), relative humidity and temperature. It automatically detects clouds and classifies them according to their cloud phase.&lt;/p&gt;&lt;p&gt;In this study we present the novel cloudindicator algorithm and the combined dataset of ATom and A-LIFE global scale in-situ cloud observations. Furthermore, we show results of the cloud phase analysis of the extensive dataset.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document