scholarly journals Influence of the Arctic oscillation on central United States summer rainfall

Author(s):  
Qi Hu ◽  
Song Feng
2017 ◽  
Vol 30 (23) ◽  
pp. 9575-9590 ◽  
Author(s):  
Yuki Kanno ◽  
John E. Walsh ◽  
Toshiki Iwasaki

In boreal winter, the cold air mass (CAM) flux of air with a potential temperature below 280 K forms climatological mean CAM streams in East Asia and North America (NA). This study diagnoses the interannual variability of the NA stream by an analysis of the CAM flux across 60°N between Greenland and the Rocky Mountains. The first empirical orthogonal function (EOF) represents the variations in intensity of the NA stream. When the first principal component (PC1) is highly positive, the central part of the NA stream is intensified, with cold anomalies east of the Rocky Mountains. At the same time, a stratospheric polar vortex tends to split or displace toward NA. PC1 is highly correlated with the tropical Northern Hemisphere pattern, implying that this pattern is associated with the intensity of the NA stream. The second EOF shows a longitudinal shift of the NA stream toward Greenland or the Rocky Mountains. A highly negative PC2 results in a cold anomaly from western Canada to the Midwestern United States and anomalous heavy snowfall in the northeastern United States. PC2 is positively correlated with the Arctic Oscillation, which suggests that the longitudinal position of the NA stream varies with the Arctic Oscillation. These results illustrate how the intensity and location of cold air outbreaks vary with large-scale modes of atmospheric variability, with corresponding implications for the predictability of winter severity in NA.


2020 ◽  
Vol 33 (8) ◽  
pp. 3173-3195 ◽  
Author(s):  
David W. Stahle ◽  
Edward R. Cook ◽  
Dorian J. Burnette ◽  
Max C. A. Torbenson ◽  
Ian M. Howard ◽  
...  

AbstractCool- and warm-season precipitation totals have been reconstructed on a gridded basis for North America using 439 tree-ring chronologies correlated with December–April totals and 547 different chronologies correlated with May–July totals. These discrete seasonal chronologies are not significantly correlated with the alternate season; the December–April reconstructions are skillful over most of the southern and western United States and north-central Mexico, and the May–July estimates have skill over most of the United States, southwestern Canada, and northeastern Mexico. Both the strong continent-wide El Niño–Southern Oscillation (ENSO) signal embedded in the cool-season reconstructions and the Arctic Oscillation signal registered by the warm-season estimates faithfully reproduce the sign, intensity, and spatial patterns of these ocean–atmospheric influences on North American precipitation as recorded with instrumental data. The reconstructions are included in the North American Seasonal Precipitation Atlas (NASPA) and provide insight into decadal droughts and pluvials. They indicate that the sixteenth-century megadrought, the most severe and sustained North American drought of the past 500 years, was the combined result of three distinct seasonal droughts, each bearing unique spatial patterns potentially associated with seasonal forcing from ENSO, the Arctic Oscillation, and the Atlantic multidecadal oscillation. Significant 200–500-yr-long trends toward increased precipitation have been detected in the cool- and warm-season reconstructions for eastern North America. These seasonal precipitation changes appear to be part of the positive moisture trend measured in other paleoclimate proxies for the eastern area that began as a result of natural forcing before the industrial revolution and may have recently been enhanced by anthropogenic climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weizheng Qu ◽  
Fei Huang ◽  
Jinping Zhao ◽  
Ling Du ◽  
Yong Cao

AbstractThe parasol effect of volcanic dust and aerosol caused by volcanic eruption results in the deepening and strengthening of the Arctic vortex system, thus stimulating or strengthening the Arctic Oscillation (AO). Three of the strongest AOs in more than a century have been linked to volcanic eruptions. Every significant fluctuation of the AO index (AOI = ΔH_middle latitudes − ΔH_Arctic) for many years has been associated with a volcanic eruption. Volcanic activity occurring at different locations in the Arctic vortex circulation will exert different effects on the polar vortex.


2021 ◽  
pp. 5-16
Author(s):  
V. N. Kryjov ◽  

The 2019/2020 wintertime (December–March) anomalies of sea level pressure, temperature, and precipitation are analyzed. The contribution of the 40-year linear trend in these parameters associated with global climate change and of the interannual variability associated with the Arctic Oscillation (AO) is assessed. In the 2019/2020 winter, extreme zonal circulation was observed. The mean wintertime AO index was 2.20, which ranked two for the whole observation period (started in the early 20th century) and was outperformed only by the wintertime index of 1988/1989. It is shown that the main contribution to the 2019/2020 wintertime anomalies was provided by the AO. A noticeable contribution of the trend was observed only in the Arctic. Extreme anomalies over Northern Eurasia were mainly associated with the AO rather than the trend. However, the AO-related anomalies, particularly air temperature anomalies, were developing against the background of the trend-induced increased mean level.


Sign in / Sign up

Export Citation Format

Share Document