scholarly journals Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer

2010 ◽  
Vol 115 (D23) ◽  
Author(s):  
Yuzo Miyazaki ◽  
Kimitaka Kawamura ◽  
Maki Sawano
2015 ◽  
Vol 15 (18) ◽  
pp. 26509-26554 ◽  
Author(s):  
D. K. Deshmukh ◽  
K. Kawamura ◽  
M. Lazaar ◽  
B. Kunwar ◽  
S. K. R. Boreddy

Abstract. Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2–\\C12), ω-oxoacids (ωC2–ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2–C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2–C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65–1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3–4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.


2015 ◽  
Vol 15 (4) ◽  
pp. 1959-1973 ◽  
Author(s):  
C. Zhu ◽  
K. Kawamura ◽  
B. Kunwar

Abstract. Biomass burning (BB) largely modifies the chemical composition of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, on subtropical Okinawa Island, from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p < 0.001); the latter is another BB tracer. The analyses of air mass trajectories and fire spots demonstrated that the seasonal variations of anhydrosugars are caused by long-range transport of BB emissions from the Asian continent. We found winter maxima of anhydrosugars, which may be associated with open burning and domestic heating and cooking in northern and northeastern China, Mongolia and Russia and with the enhanced westerly winds. The monthly averaged levoglucosan / mannosan ratios were lower (2.1–4.8) in May–June and higher (13.3–13.9) in November–December. The lower values may be associated with softwood burning in northern China, Korea and southwestern Japan whereas the higher values are probably caused by agricultural waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.


1984 ◽  
Vol 51 (2) ◽  
pp. 267-278 ◽  
Author(s):  
Margaret L. Green ◽  
K. John Scott ◽  
Malcolm Anderson ◽  
Mary C. A. Griffin ◽  
Frank A. Griffin

SummaryWhole milks concentrated 1·5–4-fold and acidified and citrated milks concentrated 2·8-fold by ultrafiltration at 50 °C were analysed for chemical changes relevant to further processing, storage or nutrition. Fat and protein were entirely retained in the concentrate. The retention of water-soluble vitamins, Ca, Mg, phosphate and trace minerals depended on the proportion bound to the protein. Ascorbic acid was rapidly destroyed during concentration. Because of the differential retention of nitrogenous components, protein comprised a progressively higher proportion of the total N as the milk became more concentrated. No denaturation of whey protein or disruption of casein micelles was detected during concentration of whole milk, but some solubilization of the casein occurred after citration. Reduction of fat globule size occurred early in the concentration process, damage to the fat globule membrane was indicated and the milk became more susceptible to lipolysis. Apart from a tendency for preacidified or precitrated concentrates to gel, no change in the susceptibility of the milks to heat damage was detected.


2014 ◽  
Vol 14 (18) ◽  
pp. 25581-25616 ◽  
Author(s):  
C. Zhu ◽  
K. Kawamura

Abstract. Biomass burning (BB) largely modifies the chemical compositions of atmospheric aerosols on the globe. We collected aerosol samples (TSP) at Cape Hedo, subtropical Okinawa Island from October 2009 to February 2012 to study anhydrosugars as BB tracers. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. We found a clear seasonal trend of levoglucosan and mannosan with winter maxima and summer minima. Positive correlation was found between levoglucosan and nss-K+ (r = 0.38, p < 0.001); the latter is another BB tracer. The analyses of air mass trajectories and fire spots demonstrated that the seasonal variations of anhydrsosugsars are caused by a long-range transport of BB emissions from the Asian continent. We found winter maxima of anhydrosugars, which may be associated with open burning and domestic heating and cooking in north and northeast China, Mongolia and Russia and with the enhanced westerly. The monthly averaged levoglucosan/mannosan ratios were lower (2.1–4.8) in May–June and higher (13.3–13.9) in November–December. The lower values may be associated with softwood burning in north China, Korea and southwest Japan whereas the higher values are probably caused by agriculture waste burning of maize straw in the North China Plain. Anhydrosugars comprised 0.22% of water-soluble organic carbon (WSOC) and 0.13% of organic carbon (OC). The highest values to WSOC (0.37%) and OC (0.25%) were found in winter, again indicating an important BB contribution to Okinawa aerosols in winter. This study provides useful information to better understand the effect of East Asian biomass burning on the air quality in the western North Pacific Rim.


Sign in / Sign up

Export Citation Format

Share Document