Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash

2011 ◽  
Vol 116 (D10) ◽  
Author(s):  
Xiushu Qie ◽  
Rubin Jiang ◽  
Caixia Wang ◽  
Jing Yang ◽  
Junfang Wang ◽  
...  
2021 ◽  
Vol 109 ◽  
pp. 103537
Author(s):  
Li Cai ◽  
Qiang Hu ◽  
Jianguo Wang ◽  
Xin Zou ◽  
Quanxin Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fukun Wang ◽  
Jianguo Wang ◽  
Li Cai ◽  
Rui Su ◽  
Wenhan Ding ◽  
...  

AbstractTwo special cases of dart leader propagation were observed by the high-speed camera in the leader/return stroke sequences of a classical triggered lightning flash and an altitude-triggered lightning flash, respectively. Different from most of the subsequent return strokes preceded by only one leader, the return stroke in each case was preceded by two leaders occurring successively and competing in the same channel, which herein is named leader-chasing behavior. In one case, the polarity of the latter leader was opposite to that of the former leader and these two combined together to form a new leader, which shared the same polarity with the former leader. In the other case, the latter leader shared the same polarity with the former leader and disappeared after catching up with the former leader. The propagation of the former leader in this case seems not to be significantly influenced by the existence of the latter leader.


2010 ◽  
Vol 115 (D23) ◽  
Author(s):  
C. J. Biagi ◽  
M. A. Uman ◽  
J. D. Hill ◽  
D. M. Jordan ◽  
V. A. Rakov ◽  
...  

1991 ◽  
Vol 111 (10) ◽  
pp. 1079-1085
Author(s):  
Tadashi Kanao ◽  
Zen-Ichiro Kawasaki ◽  
Kenji Matsuura ◽  
Kenji Yamamoto ◽  
Kenji Horii ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yunfeng Zhang ◽  
Erchun Zhang ◽  
Jialiang Gu

The horizontal electric field from the lightning return-stroke channel is evaluated by the electromagnetic field equations of moving charges in this paper. When a lightning flash strikes the ground, the charges move upward the lightning channel at the return-stroke speed, thereby producing the electromagnetic fields. According to the electromagnetic field equations of moving charges, the detained charges, uniformly moving charges, and decelerating (or accelerating) charges in each segment of the channel generate electrostatic fields, velocity fields, and radiation fields, respectively. The horizontal component of the sum is the horizontal electric field over the perfectly conducting ground. For the real soil with finite conductivity, the Wait formula is used here for the evaluation of the horizontal electric field over the realistic soil. The proposed method can avoid the oscillation of the fields in the long distance by the FDTD method and the singularity problem of the integral equation by the Sommerfeld integral method. The influences of the return-stroke speed, distance, and soil conductivity on the horizontal electric field are also analyzed by the proposed method. The conclusions can be drawn that the horizontal electric field decreases with the increasing of the return-stroke speed; the negative offset increases with the increasing of horizontal distance and with the decreasing of the soil conductivity, thereby forming the bipolar waveform. These conclusions will be practically valuable for the protection of lightning-induced overvoltage on the transmission lines.


2013 ◽  
Vol 118 (8) ◽  
pp. 3402-3414 ◽  
Author(s):  
W. R. Gamerota ◽  
M. A. Uman ◽  
J. D. Hill ◽  
J. Pilkey ◽  
T. Ngin ◽  
...  

2008 ◽  
Vol 2 (1) ◽  
pp. 261-270 ◽  
Author(s):  
Udaya Kumar ◽  
Rosy B. Raysaha ◽  
K.P. Dileep Kumar

The four most important factors that govern the return stroke evolution can be identified as: (i) electric field due to charge distributed along the channel, (ii) transient enhancement of conductance by several orders at the bridging regime (iii) the non-linear increase in channel conductance at the propagating current front and (iv) the associated dynamic electromagnetic field which support the evolution of current along the channel. For a more realistic modelling of the lightning return stroke, the present work attempts to consider these aspects in suitable manner. The charge simulation method is employed for evaluating the quasi-static field due to (i). For the dynamic field, the problem involves conduction along a thin structure with open boundary on one side. Further, in order to efficiently represent a vertically extended grounded strike object, as well as, channel of quite arbitrary geometry, boundary based approach is believed to be the ideal choice. Considering these, a time-dependent electric field integral equation (TD-EFIE) along with a sub-sectional collocation form of the method of moments (MoM) is chosen for the numerical field evaluation. The dynamic variation of conductance in the channel other than the bridging zone is modelled by a first order arc equation. For the bridging zone, arc equation which explicitly portray in some sense, accumulation of energy is considered. Accordingly, formulations given by Barannik, Popovic and Toepler were scrutinized for their suitability. After some preliminary simulation studies, a self contained model for the first return stoke of a lightning flash is presented. The stability of the model is verified by running the program for longer durations with different cloud base potentials and cloud base heights. Simulation results are in agreement with the field data on current and velocity decay rate for the first one kilometer height. Also, the relation between the charge density at channel tip and the return stroke current peak favorably compares with the literature.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 658
Author(s):  
Zefang Chen ◽  
Yang Zhang ◽  
Yanfeng Fan ◽  
Jingxuan Wang ◽  
Dong Zheng ◽  
...  

The initiation of a leader is an important lightning discharge process, but how an upward positive leader (UPL) initiates is still not fully understood. The evolution characteristics of a UPL during its initial stage was systematically studied based on directly measured current data of 14 triggered lightning events in 2019. It was found that the initial stage of triggered lightning can be divided into two types: a single initial process form and a multiple initial process form, with percentages of 64.29% and 35.71%, respectively. Compared with the former, the latter usually lasts longer, and the corresponding lightning is often triggered under a lower ground-level quasi-static electric field. In each initial process, precursor current pulses (PCPs), PCP clusters and initial precursor current pulse (IPCPs) are typical current waveforms, and the pulse durations and transferred charges of PCPs increase linearly with time. However, in the multiple initial process form, the pulse durations and transferred charges of PCPs will reduce significantly after each previous initial process and then continue to increase in the following initial process. In each initial process, when the pulse duration and transferred charge of a PCP increase to a certain extent, PCP clusters and IPCPs begin to appear. For the emergence of PCP clusters, the average values of the threshold are 3.48 μs and 19.53 μC, respectively. For the occurrence of IPCPs, the corresponding values are 4.69 μs and 27.23 μC, respectively. The average values of pulse durations and transferred charges of IPCPs are larger than those of PCP clusters. Compared with adjacent PCP clusters, IPCPs contain more pulses, with a critical range of 6–7. IPCPs also last longer, and have a critical range of 138–198 μs.


Sign in / Sign up

Export Citation Format

Share Document