scholarly journals Interfacing a one-dimensional lake model with a single-column atmospheric model: Application to the deep Lake Geneva, Switzerland

2012 ◽  
Vol 48 (4) ◽  
Author(s):  
Stéphane Goyette ◽  
Marjorie Perroud
2009 ◽  
Vol 54 (5) ◽  
pp. 1574-1594 ◽  
Author(s):  
Marjorie Perroud ◽  
Stéphane Goyette ◽  
Andrey Martynov ◽  
Martin Beniston ◽  
Orlane Annevillec

2008 ◽  
Vol 21 (18) ◽  
pp. 4859-4878 ◽  
Author(s):  
Minghua Zhang ◽  
Christopher Bretherton

Abstract This study investigates the physical mechanism of low cloud feedback in the Community Atmospheric Model, version 3 (CAM3) through idealized single-column model (SCM) experiments over the subtropical eastern oceans. Negative cloud feedback is simulated from stratus and stratocumulus that is consistent with previous diagnostics of cloud feedbacks in CAM3 and its predecessor versions. The feedback occurs through the interaction of a suite of parameterized processes rather than from any single process. It is caused by the larger amount of in-cloud liquid water in stratus clouds from convective sources, and longer lifetimes of these clouds in a warmer climate through their interaction with boundary layer turbulence. Thermodynamic effects are found to dominate the negative cloud feedback in the model. The dynamic effect of weaker subsidence in a warmer climate also contributes to the negative cloud feedback, but with about one-quarter of the magnitude of the thermodynamic effect, owing to increased low-level convection in a warmer climate.


2021 ◽  
Author(s):  
Daria Gladskikh ◽  
Evgeny Mortikov ◽  
Victor Stepanenko

<p>The study of thermodynamic and biochemical processes of inland water objects using one- and three-dimensional RANS numerical models was carried out both for idealized water bodies and using measurements data. The need to take into account seiche oscillations to correctly reproduce the deepening of the upper mixed layer in one-dimensional (vertical) models is demonstrated. We considered the one-dimensional LAKE model [1] and the three-dimensional model [2, 3, 4] developed at the Research Computing Center of Moscow State University on the basis of a hydrodynamic code combining DNS/LES/RANS approaches for calculating geophysical turbulent flows. The three-dimensional model was supplemented by the equations for calculating biochemical substances by analogy with the one-dimensional biochemistry equations used in the LAKE model. The effect of mixing processes on the distribution of concentration of greenhouse gases, in particular, methane and oxygen, was studied.</p><p>The work was supported by grants of the RF President’s Grant for Young Scientists (MK-1867.2020.5, MD-1850.2020.5) and by the RFBR (19-05-00249, 20-05-00776). </p><p>1. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Timo V. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9(5). P. 1977–2006.<br>2. Mortikov E.V., Glazunov A.V., Lykosov V.N. Numerical study of plane Couette flow: turbulence statistics and the structure of pressure-strain correlations // Russian Journal of Numerical Analysis and Mathematical Modelling. 2019. 34(2). P. 119-132.<br>3. Mortikov, E.V. Numerical simulation of the motion of an ice keel in stratified flow // Izv. Atmos. Ocean. Phys. 2016. V. 52. P. 108-115.<br>4. Gladskikh D.S., Stepanenko V.M., Mortikov E.V. On the influence of the horizontal dimensions of inland waters on the thickness of the upper mixed layer // Water Resourses. 2021.V. 45, 9 pages. (in press) </p>


2015 ◽  
Vol 8 (6) ◽  
pp. 1645-1658 ◽  
Author(s):  
P. Uhe ◽  
M. Thatcher

Abstract. A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS) version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10–30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.


2018 ◽  
Vol 11 (12) ◽  
pp. 4727-4738 ◽  
Author(s):  
J. Antoon van Hooft ◽  
Stéphane Popinet ◽  
Bas J. H. van de Wiel

Abstract. It is well known that the representation of certain atmospheric conditions in climate and weather models can still suffer from the limited grid resolution that is facilitated by modern-day computer systems. Herein we study a simple one-dimensional analogy to those models by using a single-column model description of the atmosphere. The model employs an adaptive Cartesian mesh that applies a high-resolution mesh only when and where it is required. The so-called adaptive-grid model is described, and we report our findings obtained for tests to evaluate the representation of the atmospheric boundary layer, based on the first two GEWEX ABL Study (GABLS) inter-comparison cases. The analysis shows that the adaptive-grid algorithm is indeed able to dynamically coarsen and refine the numerical grid whilst maintaining an accurate solution. This is an interesting result as in reality, transitional dynamics (e.g. due to the diurnal cycle or due to changing synoptic conditions) are the rule rather than the exception.


Sign in / Sign up

Export Citation Format

Share Document