scholarly journals The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation

2012 ◽  
Vol 117 (D16) ◽  
pp. n/a-n/a ◽  
Author(s):  
Bingbing Wang ◽  
Andrew T. Lambe ◽  
Paola Massoli ◽  
Timothy B. Onasch ◽  
Paul Davidovits ◽  
...  
2017 ◽  
Vol 200 ◽  
pp. 165-194 ◽  
Author(s):  
Joseph C. Charnawskas ◽  
Peter A. Alpert ◽  
Andrew T. Lambe ◽  
Thomas Berkemeier ◽  
Rachel E. O’Brien ◽  
...  

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveTgand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.


2016 ◽  
Vol 16 (10) ◽  
pp. 6495-6509 ◽  
Author(s):  
Karoliina Ignatius ◽  
Thomas B. Kristensen ◽  
Emma Järvinen ◽  
Leonid Nichman ◽  
Claudia Fuchs ◽  
...  

Abstract. There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −39.0 and −37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.


2015 ◽  
Vol 15 (24) ◽  
pp. 35719-35752 ◽  
Author(s):  
K. Ignatius ◽  
T. B. Kristensen ◽  
E. Järvinen ◽  
L. Nichman ◽  
C. Fuchs ◽  
...  

Abstract. There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −36.5 and −38.3 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nuclei (IN) budget.


2018 ◽  
Author(s):  
Wiebke Frey ◽  
Dawei Hu ◽  
James Dorsey ◽  
M. Rami Alfarra ◽  
Aki Pajunoja ◽  
...  

Abstract. Secondary Organic Aerosol (SOA) particles have been found to be efficient ice nucleating particles under the cold conditions of (tropical) upper tropospheric cirrus clouds. Whether they also are efficient at initiating freezing at slightly warmer conditions as found in mixed phase clouds remains undetermined. Here, we study the ice nucleating ability of photo-chemically produced SOA particles with the combination of the Manchester Aerosol and Ice Cloud Chambers. Three SOA systems were tested resembling biogenic/anthropogenic particles and particles of different phase state. After the aerosol particles were formed, they were transferred into the cloud chamber where subsequent quasi-adiabatic cloud evacuations were performed. Additionally, the ice forming abilities of ammonium sulfate and kaolinite were investigated as a reference to test the experimental setup. Clouds were formed in the temperature range of −20 °C to −28.6 °C. Only the reference experiment using dust particles showed evidence of ice nucleation. No ice particles were observed in any other experiment. Thus, we conclude that SOA particles produced under the conditions of the reported experiments are not efficient ice nucleating particles starting at liquid saturation under mixed-phase cloud conditions.


2019 ◽  
Vol 19 (7) ◽  
pp. 5091-5110 ◽  
Author(s):  
Zamin A. Kanji ◽  
Ryan C. Sullivan ◽  
Monika Niemand ◽  
Paul J. DeMott ◽  
Anthony J. Prenni ◽  
...  

Abstract. Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233 K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3 µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66 % prediction bands) region of the average fit to the data, which captures 75 % of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60 nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60 nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.


2018 ◽  
Author(s):  
Zamin A. Kanji ◽  
Ryan C. Sullivan ◽  
Monika Niemand ◽  
Paul J. DeMott ◽  
Anthony J. Prenni ◽  
...  

Abstract. Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature range 253–233 K and for supersaturated humidity conditions in the immersion-freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on poly-disperse particles in the size range 0.01–3 µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AF) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA coated dusts is found but this is well within the 1σ (66 % prediction bands) region of the average fit to the data, which captures 75 % of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60 nm). The results suggest that differences observed are mostly within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare poly-disperse aerosol measurements which may show variable composition with particle size. In the atmosphere, coatings with similar properties to that of the SOA tested here for a thickness up to 60 nm, the maximum thickness tested here, is not expected to impede or enhance the ice nucleation ability by immersion mode of mineral dust in the mixed-phase cloud regime.


2021 ◽  
Author(s):  
Jon F. Went ◽  
Jeanette D. Wheeler ◽  
François J. Peaudecerf ◽  
Nadine Borduas-Dedekind

<p>Cloud formation represents a large uncertainty in current climate predictions. In particular, ice in mixed-phase clouds requires the presence of ice nucleating particles (INPs) or ice nucleating macromolecules (INMs). An influential population of INPs has been proposed to be organic sea spray aerosols in otherwise pristine ocean air. However, the interactions between INMs present in sea water and their freezing behavior under atmospheric immersion freezing conditions warrants further research to constrain the role of sea spray aerosols on cloud formation. Indeed, salt is known to lower the freezing temperature of water, through a process called freezing point depression (FPD). Yet, current FPD corrections are solely based on the salt content and assume that the INMs’ ice nucleation abilities are identical with and without salt. Thus, we measured the effect of salt content on the ice nucleating ability of INMs, known to be associated with marine phytoplankton, in immersion freezing experiments in the Freezing Ice Nuclei Counter (FINC) (Miller et al., AMTD, 2020). We measured eight INMs, namely taurine, isethionate, xylose, mannitol, dextran, laminarin, and xanthan as INMs in pure water at temperatures relevant for mixed-phase clouds (e.g. 50% activated fraction at temperatures above –23 °C at 10 mM concentration). Subsequently, INMs were analyzed in artificial sea water containing 36 g salt L<sup>-1</sup>. Most INMs, except laminarin and xanthan, showed a loss of ice activity in artificial sea water compared to pure water, even after FPD correction. Based on our results, we hypothesize sea salt has an inhibitory effect on the ice activity of INMs. This effect influences our understanding of how INMs nucleate ice as well as challenges our use of FPD correction and subsequent extrapolation to ice activity under mixed-phase cloud conditions.</p>


2015 ◽  
Vol 15 (21) ◽  
pp. 31433-31469 ◽  
Author(s):  
L. Nichman ◽  
C. Fuchs ◽  
E. Järvinen ◽  
K. Ignatius ◽  
N. F. Höppel ◽  
...  

Abstract. Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather and General Circulation Models (GCMs). The simultaneous detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud-particle size range below 50 μm, remains challenging in mixed phase, often unstable ice-water phase environments. The Cloud Aerosol Spectrometer with Polarisation (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure their effects on the backscatter polarisation state. Here we operate the versatile Cosmics-Leaving-OUtdoor-Droplets (CLOUD) chamber facility at the European Organisation for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water and ice particles. In this paper, optical property measurements of mixed phase clouds and viscous Secondary Organic Aerosol (SOA) are presented. We report observations of significant liquid – viscous SOA particle polarisation transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarisation ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulphate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentration and mixtures with respect to the CLOUD 8–9 campaigns and its potential contribution to Tropical Troposphere Layer (TTL) analysis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin J. Wolf ◽  
Yue Zhang ◽  
Maria A. Zawadowicz ◽  
Megan Goodell ◽  
Karl Froyd ◽  
...  

Abstract Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at –46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L–1. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.


2014 ◽  
Vol 48 (3) ◽  
pp. 1675-1682 ◽  
Author(s):  
Gregory P. Schill ◽  
David O. De Haan ◽  
Margaret A. Tolbert

Sign in / Sign up

Export Citation Format

Share Document