scholarly journals Reconstructing the 20th century high-resolution climate of the southeastern United States

2012 ◽  
Vol 117 (D19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Steven M. DiNapoli ◽  
Vasubandhu Misra
2011 ◽  
Vol 26 (6) ◽  
pp. 785-807 ◽  
Author(s):  
Jonathan L. Case ◽  
Sujay V. Kumar ◽  
Jayanthi Srikishen ◽  
Gary J. Jedlovec

Abstract It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.


2018 ◽  
Vol 18 (4) ◽  
pp. 1261-1277 ◽  
Author(s):  
Paul W. Miller ◽  
Thomas L. Mote

Abstract. Weakly forced thunderstorms (WFTs), short-lived convection forming in synoptically quiescent regimes, are a contemporary forecasting challenge. The convective environments that support severe WFTs are often similar to those that yield only non-severe WFTs and, additionally, only a small proportion of individual WFTs will ultimately produce severe weather. The purpose of this study is to better characterize the relative severe weather potential in these settings as a function of the convective environment. Thirty-one near-storm convective parameters for > 200 000 WFTs in the Southeastern United States are calculated from a high-resolution numerical forecasting model, the Rapid Refresh (RAP). For each parameter, the relative odds of WFT days with at least one severe weather event is assessed along a moving threshold. Parameters (and the values of them) that reliably separate severe-weather-supporting from non-severe WFT days are highlighted. Only two convective parameters, vertical totals (VTs) and total totals (TTs), appreciably differentiate severe-wind-supporting and severe-hail-supporting days from non-severe WFT days. When VTs exceeded values between 24.6 and 25.1 ∘C or TTs between 46.5 and 47.3 ∘C, odds of severe-wind days were roughly 5× greater. Meanwhile, odds of severe-hail days became roughly 10× greater when VTs exceeded 24.4–26.0 ∘C or TTs exceeded 46.3–49.2 ∘C. The stronger performance of VT and TT is partly attributed to the more accurate representation of these parameters in the numerical model. Under-reporting of severe weather and model error are posited to exacerbate the forecasting challenge by obscuring the subtle convective environmental differences enhancing storm severity.


2011 ◽  
Vol 50 (7) ◽  
pp. 1459-1475 ◽  
Author(s):  
Richard T. McNider ◽  
John R. Christy ◽  
Don Moss ◽  
Kevin Doty ◽  
Cameron Handyside ◽  
...  

AbstractThe severity of drought has many implications for society. Its impacts on rain-fed agriculture are especially direct, however. The southeastern United States, with substantial rain-fed agriculture and large variability in growing-season precipitation, is especially vulnerable to drought. As commodity markets, drought assistance programs, and crop insurance have matured, more advanced information is needed on the evolution and impacts of drought. So far many new drought products and indices have been developed. These products generally do not include spatial details needed in the Southeast or do not include the physiological state of the crop, however. Here, a new type of drought measure is described that incorporates high-resolution physical inputs into a crop model (corn) that evolves based on the physical–biophysical conditions. The inputs include relatively high resolution (as compared with standard surface or NOAA Cooperative Observer Program data) (5 km) radar-derived precipitation, satellite-derived insolation, and temperature analyses. The system (referred to as CropRT for gridded crop real time) is run in real time under script control to provide daily maps of crop evolution and stress. Examples of the results from the system are provided for the 2008–10 growing seasons. Plots of daily crop water stress show small subcounty-scale variations in stress and the rapid change in stress over time. Depictions of final crop yield in comparison with seasonal average stress are provided.


2015 ◽  
Vol 30 (4) ◽  
pp. 892-913 ◽  
Author(s):  
James O. Pinto ◽  
Joseph A. Grim ◽  
Matthias Steiner

Abstract An object-based verification technique that keys off the radar-retrieved vertically integrated liquid (VIL) is used to evaluate how well the High-Resolution Rapid Refresh (HRRR) predicted mesoscale convective systems (MCSs) in 2012 and 2013. It is found that the modeled radar VIL values are roughly 50% lower than observed. This mean bias is accounted for by reducing the radar VIL threshold used to identify MCSs in the HRRR. This allows for a more fair evaluation of the model’s skill at predicting MCSs. Using an optimized VIL threshold for each summer, it is found that the HRRR reproduces the first (i.e., counts) and second moments (i.e., size distribution) of the observed MCS size distribution averaged over the eastern United States, as well as their aspect ratio, orientation, and diurnal variations. Despite threshold optimization, the HRRR tended to predict too many (few) MCSs at lead times less (greater) than 4 h because of lead time–dependent biases in the modeled radar VIL. The HRRR predicted too many MCSs over the Great Plains and too few MCSs over the southeastern United States during the day. These biases are related to the model’s tendency to initiate too many MCSs over the Great Plains and too few MCSs over the southeastern United States. Additional low biases found over the Mississippi River valley region at night revealed a tendency for the HRRR to dissipate MCSs too quickly. The skill of the HRRR at predicting specific MCS events increased between 2012 and 2013, coinciding with changes in both the model physics and in the methods used to assimilate the three-dimensional radar reflectivity.


Sign in / Sign up

Export Citation Format

Share Document