scholarly journals Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study

2016 ◽  
Vol 146 ◽  
pp. 51-58 ◽  
Author(s):  
Liuhua Shi ◽  
Pengfei Liu ◽  
Itai Kloog ◽  
Mihye Lee ◽  
Anna Kosheleva ◽  
...  
2011 ◽  
Vol 26 (6) ◽  
pp. 785-807 ◽  
Author(s):  
Jonathan L. Case ◽  
Sujay V. Kumar ◽  
Jayanthi Srikishen ◽  
Gary J. Jedlovec

Abstract It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.


2013 ◽  
Vol 26 (5) ◽  
pp. 1575-1594 ◽  
Author(s):  
Catrin M. Mills ◽  
John E. Walsh

Abstract The Pacific decadal oscillation (PDO) is an El Niño–Southern Oscillation (ENSO)-like climate oscillation that varies on multidecadal and higher-frequency scales, with a sea surface temperature (SST) dipole in the Pacific. This study addresses the seasonality, vertical structure, and across-variable relationships of the local North Pacific and downstream North American atmospheric signal of the PDO. The PDO-based composite difference fields of 500-mb geopotential height, surface air temperature, sea level pressure, and precipitation vary not only across seasons, but also from one calendar month to another within a season, although month-to-month continuity is apparent. The most significant signals occur in western North America and in the southeastern United States, where a positive PDO is associated with negative heights, consistent with underlying temperatures in the winter. In summer, a negative precipitation signal in the southeastern United States associated with a positive PDO phase is consistent with a ridge over the region. When an annual harmonic is fit to the 12 monthly surface air temperature differences at each grid point, the PDO temperature signal peaks in winter in most of North America, while a peak in summer occurs in the southeastern United States. Approximately 25% of the variance of the PDO index is accounted for by ENSO. Atmospheric composite differences based on a residual (ENSO linearly removed) PDO index have many similarities to those of the full PDO signal.


Author(s):  
Anne B. Hoos ◽  
Silvia Terziotti ◽  
Gerard McMahon ◽  
Katerina Savvas ◽  
Kirsten C. Tighe ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 1261-1277 ◽  
Author(s):  
Paul W. Miller ◽  
Thomas L. Mote

Abstract. Weakly forced thunderstorms (WFTs), short-lived convection forming in synoptically quiescent regimes, are a contemporary forecasting challenge. The convective environments that support severe WFTs are often similar to those that yield only non-severe WFTs and, additionally, only a small proportion of individual WFTs will ultimately produce severe weather. The purpose of this study is to better characterize the relative severe weather potential in these settings as a function of the convective environment. Thirty-one near-storm convective parameters for > 200 000 WFTs in the Southeastern United States are calculated from a high-resolution numerical forecasting model, the Rapid Refresh (RAP). For each parameter, the relative odds of WFT days with at least one severe weather event is assessed along a moving threshold. Parameters (and the values of them) that reliably separate severe-weather-supporting from non-severe WFT days are highlighted. Only two convective parameters, vertical totals (VTs) and total totals (TTs), appreciably differentiate severe-wind-supporting and severe-hail-supporting days from non-severe WFT days. When VTs exceeded values between 24.6 and 25.1 ∘C or TTs between 46.5 and 47.3 ∘C, odds of severe-wind days were roughly 5× greater. Meanwhile, odds of severe-hail days became roughly 10× greater when VTs exceeded 24.4–26.0 ∘C or TTs exceeded 46.3–49.2 ∘C. The stronger performance of VT and TT is partly attributed to the more accurate representation of these parameters in the numerical model. Under-reporting of severe weather and model error are posited to exacerbate the forecasting challenge by obscuring the subtle convective environmental differences enhancing storm severity.


2011 ◽  
Vol 50 (7) ◽  
pp. 1459-1475 ◽  
Author(s):  
Richard T. McNider ◽  
John R. Christy ◽  
Don Moss ◽  
Kevin Doty ◽  
Cameron Handyside ◽  
...  

AbstractThe severity of drought has many implications for society. Its impacts on rain-fed agriculture are especially direct, however. The southeastern United States, with substantial rain-fed agriculture and large variability in growing-season precipitation, is especially vulnerable to drought. As commodity markets, drought assistance programs, and crop insurance have matured, more advanced information is needed on the evolution and impacts of drought. So far many new drought products and indices have been developed. These products generally do not include spatial details needed in the Southeast or do not include the physiological state of the crop, however. Here, a new type of drought measure is described that incorporates high-resolution physical inputs into a crop model (corn) that evolves based on the physical–biophysical conditions. The inputs include relatively high resolution (as compared with standard surface or NOAA Cooperative Observer Program data) (5 km) radar-derived precipitation, satellite-derived insolation, and temperature analyses. The system (referred to as CropRT for gridded crop real time) is run in real time under script control to provide daily maps of crop evolution and stress. Examples of the results from the system are provided for the 2008–10 growing seasons. Plots of daily crop water stress show small subcounty-scale variations in stress and the rapid change in stress over time. Depictions of final crop yield in comparison with seasonal average stress are provided.


2015 ◽  
Vol 30 (4) ◽  
pp. 892-913 ◽  
Author(s):  
James O. Pinto ◽  
Joseph A. Grim ◽  
Matthias Steiner

Abstract An object-based verification technique that keys off the radar-retrieved vertically integrated liquid (VIL) is used to evaluate how well the High-Resolution Rapid Refresh (HRRR) predicted mesoscale convective systems (MCSs) in 2012 and 2013. It is found that the modeled radar VIL values are roughly 50% lower than observed. This mean bias is accounted for by reducing the radar VIL threshold used to identify MCSs in the HRRR. This allows for a more fair evaluation of the model’s skill at predicting MCSs. Using an optimized VIL threshold for each summer, it is found that the HRRR reproduces the first (i.e., counts) and second moments (i.e., size distribution) of the observed MCS size distribution averaged over the eastern United States, as well as their aspect ratio, orientation, and diurnal variations. Despite threshold optimization, the HRRR tended to predict too many (few) MCSs at lead times less (greater) than 4 h because of lead time–dependent biases in the modeled radar VIL. The HRRR predicted too many MCSs over the Great Plains and too few MCSs over the southeastern United States during the day. These biases are related to the model’s tendency to initiate too many MCSs over the Great Plains and too few MCSs over the southeastern United States. Additional low biases found over the Mississippi River valley region at night revealed a tendency for the HRRR to dissipate MCSs too quickly. The skill of the HRRR at predicting specific MCS events increased between 2012 and 2013, coinciding with changes in both the model physics and in the methods used to assimilate the three-dimensional radar reflectivity.


2016 ◽  
Vol 17 (3) ◽  
pp. 881-896 ◽  
Author(s):  
Jonathan M. Winter ◽  
Brian Beckage ◽  
Gabriela Bucini ◽  
Radley M. Horton ◽  
Patrick J. Clemins

Abstract The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly ~⅛°) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30″), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (⅛°) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.


Sign in / Sign up

Export Citation Format

Share Document