scholarly journals Glacial-interglacial variations in sediment organic carbon accumulation and benthic foraminiferal assemblages on the Bermuda Rise (ODP Site 1063) during MIS 13 to 10

2012 ◽  
Vol 27 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Maria Serena Poli ◽  
Philip A. Meyers ◽  
Robert C. Thunell ◽  
Marco Capodivacca
2020 ◽  
Vol 64 (4) ◽  
pp. 347-363
Author(s):  
Evelyn M. Keaveney ◽  
Alan D. Radbourne ◽  
Suzanne McGowan ◽  
David B. Ryves ◽  
Paula J. Reimer

Abstract We explored the roles of phytoplankton production, carbon source, and human activity on carbon accumulation in a eutrophic lake (Rostherne Mere, UK) to understand how changes in nutrient loading, algal community structure and catchment management can influence carbon sequestration in lake sediments. Water samples (dissolved inorganic, organic and particulate carbon) were analysed to investigate contemporary carbon sources. Multiple variables in a 55-cm sediment core, which represents the last ~ 90 years of accumulation, were studied to determine historical production rates of algal communities and carbon sources. Fluctuations in net primary production, inferred from sedimentary diatom abundance and high-performance liquid chromatography (HPLC) pigment methods, were linked to nutrient input from sewage treatment works (STW) in the catchment. Stepped combustion radiocarbon (SCR) measurements established that lake sediment contains between 11% (~ 1929 CE) and 69% (~ 1978 CE) recalcitrant carbon, with changes in carbon character coinciding with peaks in accumulation rate and linked to STW inputs. Catchment disturbance was identified by radiocarbon analysis, and included STW construction in the 1930s, determined using SCR analysis, and recent nearby highway construction, determined by measurements on dissolved organic carbon from the lake and outflow river. The quantity of autochthonous carbon buried was related to diatom biovolume accumulation rate (DBAR) and decreased when diatom accumulation rate and valve size declined, despite an overall increase in net carbon production. HPLC pigment analysis indicated that changes in total C deposition and diatom accumulation were related to proliferation of non-siliceous algae. HPLC results also indicated that dominance of recalcitrant carbon in sediment organic carbon was likely caused by increased deposition rather than preservation factors. The total algal accumulation rate controlled the sediment organic carbon accumulation rate, whereas DBAR was correlated to the proportion of each carbon source buried.


Wetlands ◽  
2021 ◽  
Vol 41 (4) ◽  
Author(s):  
John F. Meeder ◽  
Randall W. Parkinson ◽  
Danielle Ogurcak ◽  
Michael S. Ross ◽  
John S. Kominoski

2009 ◽  
Vol 59 (4-7) ◽  
pp. 154-163 ◽  
Author(s):  
Elizabeth A. Canuel ◽  
Elizabeth J. Lerberg ◽  
Rebecca M. Dickhut ◽  
Steven A. Kuehl ◽  
Thomas S. Bianchi ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105270
Author(s):  
Gang Wang ◽  
Minerva Singh ◽  
Jiaqiu Wang ◽  
Ling Xiao ◽  
Dongsheng Guan

Sign in / Sign up

Export Citation Format

Share Document