scholarly journals Toward Data‐Driven Weather and Climate Forecasting: Approximating a Simple General Circulation Model With Deep Learning

2018 ◽  
Vol 45 (22) ◽  
pp. 12,616-12,622 ◽  
Author(s):  
S. Scher
2020 ◽  
Author(s):  
Rachel Furner ◽  
Peter Haynes ◽  
Dan Jones ◽  
Dave Munday ◽  
Brooks Paige ◽  
...  

<p>The recent boom in machine learning and data science has led to a number of new opportunities in the environmental sciences. In particular, climate models represent the best tools we have to predict, understand and potentially mitigate climate change, however these process-based models are incredibly complex and require huge amounts of high-performance computing resources. Machine learning offers opportunities to greatly improve the computational efficiency of these models.</p><p>Here we discuss our recent efforts to reduce the computational cost associated with running a process-based model of the physical ocean by developing an analogous data-driven model. We train statistical and machine learning algorithms using the outputs from a highly idealised sector configuration of general circulation model (MITgcm). Our aim is to develop an algorithm which is able to predict the future state of the general circulation model to a similar level of accuracy in a more computationally efficient manner.</p><p>We first develop a linear regression model to investigate the sensitivity of data-driven approaches to various inputs, e.g. temperature on different spatial and temporal scales, and meta-variables such as location information. Following this, we develop a neural network model to replicate the general circulation model, as in the work of Dueben and Bauer 2018, and Scher 2018.</p><p>We present a discussion on the sensitivity of data-driven models and preliminary results from the neural network based model.</p><p> </p><p><em>Dueben, P. D., & Bauer, P. (2018). Challenges and design choices for global weather and climate models based on machine learning. Geoscientific Model Development, 11(10), 3999-4009.</em></p><p><em>Scher, S. (2018). Toward Data‐Driven Weather and Climate Forecasting: Approximating a Simple General Circulation Model With Deep Learning. Geophysical Research Letters, 45(22), 12-616.</em></p>


2021 ◽  
Author(s):  
Philipp Hess ◽  
Niklas Boers

<p>The accurate prediction of precipitation, in particular of extremes, remains a challenge for numerical weather prediction (NWP) models. A large source of error are subgrid-scale parameterizations of processes that play a crucial role in the complex, multi-scale dynamics of precipitation, but are not explicitly resolved in the model formulation. Recent progress in purely data-driven deep learning for regional precipitation nowcasting [1] and global medium-range forecasting [2] tasks has shown competitive results to traditional NWP models.<br>Here we follow a hybrid approach, in which explicitly resolved atmospheric variables are forecast in time by a general circulation model (GCM) ensemble and then mapped to precipitation using a deep convolutional autoencoder. A frequency-based weighting of the loss function is introduced to improve the learning with regard to extreme values.<br>Our method is validated against a state-of-the-art GCM ensemble using three-hourly high resolution data. The results show an improved representation of extreme precipitation frequencies, as well as comparable error and correlation statistics.<br>   </p><p>[1] C.K. Sønderby et al. "MetNet: A Neural Weather Model for Precipitation Forecasting." arXiv preprint arXiv:2003.12140 (2020). <br>[2] S. Rasp and N. Thuerey "Purely data-driven medium-range weather forecasting achieves comparable skill to physical models at similar resolution." arXiv preprint arXiv:2008.08626 (2020).</p>


2019 ◽  
Author(s):  
Jiaxu Zhang ◽  
Wilbert Weijer ◽  
Mathew Einar Maltrud ◽  
Carmela Veneziani ◽  
Nicole Jeffery ◽  
...  

2020 ◽  
Vol 12 (5) ◽  
pp. 803-815
Author(s):  
B. N. Chetverushkin ◽  
I. V. Mingalev ◽  
E. A. Fedotova ◽  
K. G. Orlov ◽  
V. M. Chechetkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document