scholarly journals Effect of Fault Architecture and Permeability Evolution on Response to Fluid Injection

2018 ◽  
Vol 123 (11) ◽  
pp. 9982-9997 ◽  
Author(s):  
Alissar Yehya ◽  
Zhuo Yang ◽  
James R. Rice
2001 ◽  
Vol 19 (9-10) ◽  
pp. 1167-1185 ◽  
Author(s):  
I. Diabira ◽  
L. M. Castanier ◽  
A. R. Kovscek

2021 ◽  
Author(s):  
Samuel Scott ◽  
Alina Yapparova ◽  
Philipp Weis ◽  
Matthew Houde

<p>A geothermal well drilled into a reservoir at temperatures exceeding the critical point of pure water (>374 °C) could generate substantially greater quantities of energy than conventional geothermal wells. Although these temperatures can be found at shallow depths (<2-3 km) in high-grade geothermal resources located in volcanically active areas, similar temperatures are only found at depths >10 km beneath vast areas of continental crust with lower heat fluxes. Permeability decreases markedly with increasing depth below 2-3 km, so exploiting the tremendous heat resources of high temperature rock at such great depths will require permeability stimulation by the injection of high-pressure fluids. In this study, we use the CSMP++ platform to perform 3D simulations of transient permeability evolution around a geothermal doublet drilled to depths between 10-16 km. The simulations incorporate a well model initially devised by Peaceman (1978) to calculate well pressures and rates of fluid production/injection. The dynamic permeability model is based on Weis et al. (2012), initially developed to simulate the evolution of ore-forming magmatic-hydrothermal systems, and links a failure criterion for critically-stressed crust with depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. We investigate the permeability changes in response to high-pressure fluid injection in brittle and ductile rock, the timescales over which the zone of permeability stimulation migrates towards production wells, and dynamic permeability evolution in response to changes in injection and production parameters. These simulations aim to mitigate resource risks that could limit the ability to extract heat from geothermal resources in ductile upper crust and to help anticipate the conditions that would be required to make the exploitation of ultra-deep supercritical geothermal resources a reality. </p><p>References</p><p>Peaceman, D. W. (1978) Interpretation of Well-Block Pressures in Numerical Reservoir Simulation. SPE 6893, 183–194.</p><p>Weis, P., Driesner, T., & Heinrich, C. A. (2012). Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338(6114), 1613–1616.</p>


2017 ◽  
Vol 12 (1) ◽  
pp. 126-134
Author(s):  
A.M. Ilyasov

Based on the generalized Perkins-Kern-Nordgren model (PKN) for the development of a hyperbolic type vertical hydraulic fracture, an exact solution is obtained for the hydraulic fracture self-oscillations after terminating the fracturing fluid injection. These oscillations are excited by a rarefaction wave that occurs after the injection is stopped. The obtained solution was used to estimate the height, width and half-length of the hydraulic fracture at the time of stopping the hydraulic fracturing fluid injection based on the bottomhole pressure gauge data.


2017 ◽  
Author(s):  
Megan MacDonald ◽  
◽  
John E. Ebel

2020 ◽  
Vol 35 (6) ◽  
pp. 325-339
Author(s):  
Vasily N. Lapin ◽  
Denis V. Esipov

AbstractHydraulic fracturing technology is widely used in the oil and gas industry. A part of the technology consists in injecting a mixture of proppant and fluid into the fracture. Proppant significantly increases the viscosity of the injected mixture and can cause plugging of the fracture. In this paper we propose a numerical model of hydraulic fracture propagation within the framework of the radial geometry taking into account the proppant transport and possible plugging. The finite difference method and the singularity subtraction technique near the fracture tip are used in the numerical model. Based on the simulation results it was found that depending on the parameters of the rock, fluid, and fluid injection rate, the plugging can be caused by two reasons. A parameter was introduced to separate these two cases. If this parameter is large enough, then the plugging occurs due to reaching the maximum possible concentration of proppant far from the fracture tip. If its value is small, then the plugging is caused by the proppant reaching a narrow part of the fracture near its tip. The numerical experiments give an estimate of the radius of the filled with proppant part of the fracture for various injection rates and leakages into the rock.


2021 ◽  
Vol 134 ◽  
pp. 104120
Author(s):  
Yijin Zeng ◽  
Qinghua Lei ◽  
Zineng Wang ◽  
Shidong Ding ◽  
Kui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document