scholarly journals Tree Ring Reconstructions of Stemwood Biomass Indicate Increases in the Growth Rate of Black Spruce Trees Across Boreal Forests of Canada

2019 ◽  
Vol 124 (8) ◽  
pp. 2460-2480 ◽  
Author(s):  
Robbie A. Hember ◽  
Werner A. Kurz ◽  
Martin P. Girardin
The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Jeroen DM Schreel

Over the last few decades – at a range of northern sites – changes in tree-ring width and latewood density have not followed mean summertime temperature fluctuations. This discrepancy sharply contrasts an earlier correlation between those variables. As the origin of this inconsistency has not been fully deciphered, questions have emerged regarding the use of tree-ring width and latewood density as a proxy in dendrochronological climate reconstructions. I suggest that temperature is no longer the most limiting factor in certain boreal areas, which might explain the observed divergence.


2021 ◽  
Author(s):  
Anna Cedro ◽  
Grzegorz Nowak

Abstract Common horse-chestnut is frequently infested by the insect pest horse-chestnut leaf miner [HCLM; Cameraria ohridella (Deschka & Dimić, 1986), Gracillariidae, Lepidoptera]. The larvae, feeding on leaf parenchyma, cause browning and dehydration of leaves, which may be shed as early as in summer. The major aims of this study were: (1) to assess the effect of infestation by HCLM on ring-width dynamics in common horse-chestnut; (2) to determine the date of invasion of the pest; and (3) to compare the growth-climate response in the period before and after the invasion of HCLM. In 2017 in north-western Poland, samples from 30 horse-chestnut trees for the dendrochronological analysis were taken with help of a Pressler increment borer. The ring-width chronology was developed using standard dendrochronological methods. Dendroclimatological analyses were made in 2 periods: before the determined date of HCLM invasion (till the year 1999) and after the invasion (in 20002016). In 2000, in spite of favourable weather conditions, a reduced growth rate was observed in 91% of the analysed trees. The period of strong reductions lasted till 2010. Before the invasion, radial growth rate was dependent on temperature and precipitation in May and June of the current year, whereas after the invasion, the growth-climate response was dependent on temperature and precipitation in the preceding year and the correlation was stronger. Surprisingly, in recent years (2011–2016), in spite of infestation by HCLM every year, the health condition of the analysed trees has improved and tree-ring width has increased.


2003 ◽  
Vol 20 (4) ◽  
pp. 167-174
Author(s):  
Nobutaka Nakamura ◽  
Paul M. Woodard ◽  
Lars Bach

Abstract Tree boles in the boreal forests of Alberta, Canada will split once killed by a stand-replacing crown fire. A total of 1,485 fire-killed trees were sampled, 1 yr after burning, in 23 plots in 14 widely separated stands within a 370,000 ha fire. Sampling occurred in the Upper and Lower Foothills natural subregions. The frequency of splitting varied by species but averaged 41% for all species. The order in the frequency of splitting was balsam fir, black spruce, white spruce and lodgepole pine. The type of splitting (straight, spiral, or multiple) varied by species, as did the position of the split on the tree bole. Aspect or solar angle was not statistically related to the type or occurrence of splitting.


2006 ◽  
Vol 36 (12) ◽  
pp. 3194-3208 ◽  
Author(s):  
Martin T Moroni

Dead wood (dead standing tree (snag), woody debris (WD), buried wood, and stump) abundance was estimated in Newfoundland balsam fir (Abies balsamea (L.) Mill.) and black spruce (Picea mariana (Mill.) BSP) forests regrown following natural and anthropogenic disturbances. Although harvesting left few snags standing, natural disturbances generated many snags. Most were still standing 2 years after natural disturbance, but almost all had fallen after 33–34 years. Snag abundance then increased in stands aged 86–109 years. Natural disturbances generated little WD 0–2 years following disturbance. Harvesting, however, immediately generated large amounts of WD. Thirty-two to forty-one years following disturbance, most harvesting slash had decomposed, but naturally disturbed sites had large amounts of WD from collapsed snags. Harvested sites contained less WD 32–72 years following disturbance than naturally disturbed sites. Amounts of WD in black spruce regrown following harvesting and fire converged 63–72 years following disturbance, despite significant initial differences in WD quantities, diameter distribution, and decay classes. Abundance of WD increased from sites regrown 32–72 years following disturbance to older sites. Precommercial thinning had a minor impact on dead wood stocks. Stumps contained minor biomass. Buried wood and WD biomass were equivalent at some sites.


2009 ◽  
Vol 39 (11) ◽  
pp. 2168-2179 ◽  
Author(s):  
Catherine Boudreault ◽  
Yves Bergeron ◽  
Darwyn Coxson

Alectorioid lichens are the dominant group of epiphytic lichens in boreal forests. Epiphytic lichen richness and abundance generally increase with stand age and within-stand heterogeneity. The objective of this study was to evaluate the importance of time elapsed since the last fire, stand structure, tree size, tree age, and branch height for epiphytic lichen biomass of the boreal forest of western Quebec. We sampled 12 sites belonging to four forest age classes (from 50 to >200 years). We assessed epiphytic lichen biomass of three species groups ( Bryoria , Evernia , and Usnea ) on 12 trees in each site. Our results showed that biomass of Bryoria and Usnea was higher in intermediate stages (between 101 and 200 years) compared with younger (50–100 years) and older (>200 years) stages. Biomass of the three species groups was greater on larger diameter trees (>16 cm) compared with smaller ones (<16 cm). These results indicate that the protection of postfire stands aged between 101 and 200 year should be prioritized to maintain the functional role of epiphytic lichens in managed landscapes.


2004 ◽  
Vol 34 (11) ◽  
pp. 2327-2339 ◽  
Author(s):  
Igor Drobyshev ◽  
Mats Niklasson

To evaluate the potential use of tree-ring data as a proxy for fire activity at the scale of a large boreal region, we analyzed a set of regional tree-ring chronologies of Siberian larch (Larix sibirica L.), a spatially implicit annual fire record, and monthly climate data for the Komi Republic for the period 1950–1990. In most years, annually burned area was below 0.001% of the republic's forested area and reached up to 0.7% during fire-prone years. Principal components (PC) of summer aridity resolved 64.2% of the annual variation in the number of fires, 12.2% in the average fire size, and 59.2% in the annually burned area. In turn, tree-ring PCs explained 65.2% of variation in fire-related weather PCs. Dendrochronological reconstruction of the annual number of fires and of the log-transformed annually burned area predicted 27.0% and 40.1% of the high-frequency variance of these variables, respectively. Coefficient of efficiency, a measure of reconstruction usefulness, reached 0.081 (number of fires) and 0.315 (annual area burned), supporting the obtained index as a realistic proxy for regional fire activity. Decadal variation in coefficient of efficiency values suggested improved monitoring accuracy since 1960 and more effective fire suppression during the last studied decade (1980–1990).


2010 ◽  
Vol 40 (7) ◽  
pp. 1313-1324 ◽  
Author(s):  
Eric S. Kasischke ◽  
David L. Verbyla ◽  
T. Scott Rupp ◽  
A. David McGuire ◽  
Karen A. Murphy ◽  
...  

A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce ( Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska’s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska’s boreal forests and land and fire management are discussed.


2018 ◽  
Vol 27 (2) ◽  
pp. 125 ◽  
Author(s):  
Xanthe J. Walker ◽  
Jennifer L. Baltzer ◽  
Steven G. Cumming ◽  
Nicola J. Day ◽  
Jill F. Johnstone ◽  
...  

Increased fire frequency, extent and severity are expected to strongly affect the structure and function of boreal forest ecosystems. In this study, we examined 213 plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories, Canada, after an unprecedentedly large area burned in 2014. Large fire size is associated with high fire intensity and severity, which would manifest as areas with deep burning of the soil organic layer (SOL). Our primary objectives were to estimate burn depth in these fires and then to characterise landscapes vulnerable to deep burning throughout this region. Here we quantify burn depth in black spruce stands using the position of adventitious roots within the soil column, and in jack pine stands using measurements of burned and unburned SOL depths. Using these estimates, we then evaluate how burn depth and the proportion of SOL combusted varies among forest type, ecozone, plot-level moisture and stand density. Our results suggest that most of the SOL was combusted in jack pine stands regardless of plot moisture class, but that black spruce forests experience complete combustion of the SOL only in dry and moderately well-drained landscape positions. The models and calibrations we present in this study should allow future research to more accurately estimate burn depth in Canadian boreal forests.


Sign in / Sign up

Export Citation Format

Share Document