scholarly journals Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection

2019 ◽  
Vol 46 (12) ◽  
pp. 6204-6213 ◽  
Author(s):  
S. A. Fuselier ◽  
K. J. Trattner ◽  
S. M. Petrinec ◽  
M. H. Denton ◽  
S. Toledo‐Redondo ◽  
...  
2021 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

<p>Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon–midnight meridional plane simulation is extended in the dawn–dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.</p>


2009 ◽  
Vol 27 (2) ◽  
pp. 895-903 ◽  
Author(s):  
D. G. Sibeck

Abstract. We present an analytical model for the magnetic field perturbations associated with flux transfer events (FTEs) on the dayside magnetopause as a function of the shear between the magnetosheath and magnetospheric magnetic fields and the ratio of their strengths. We assume that the events are produced by component reconnection along subsolar reconnection lines with tilts that depend upon the orientation of the interplanetary magnetic field (IMF), and show that the amplitudes of the perturbations generated during southward IMF greatly exceed those during northward IMF. As a result, even if the distributions of magnetic reconnection burst durations/event dimensions are identical during periods of northward and southward IMF orientation, events occurring for southward IMF orientations must predominate in surveys of dayside events. Two factors may restore the balance between events occurring for northward and southward IMF orientations on the flanks of the magnetosphere. Events generated on the dayside magnetopause during periods of southward IMF move poleward, while those generated during periods of northward IMF slip dawnward or duskward towards the flanks. Due to differing event and magnetospheric magnetic field orientations, events that produce weak signatures on the dayside magnetopause during intervals of northward IMF orientation may produce strong signatures on the flanks.


Author(s):  
S. A. Fuselier ◽  
S. Haaland ◽  
P. Tenfjord ◽  
G. Paschmann ◽  
S. Toledo‐Redondo ◽  
...  

2021 ◽  
Author(s):  
Hengyan Man ◽  
Meng Zhou ◽  
Zhihong Zhong ◽  
Xiaohua Deng ◽  
Haimeng Li

2014 ◽  
Vol 1 (2) ◽  
pp. 1657-1671
Author(s):  
J. Guo ◽  
B. Yu

Abstract. We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.


2008 ◽  
Vol 26 (11) ◽  
pp. 3571-3583
Author(s):  
R. Maggiolo ◽  
J. A. Sauvaud ◽  
I. Dandouras ◽  
E. Luceck ◽  
H. Rème

Abstract. From 15 February 2004, 20:00 UT to 18 February 2004, 01:00 UT, the solar wind density dropped to extremely low values (about 0.35 cm−3). On 17 February, between 17:45 UT and 18:10 UT, the CLUSTER spacecraft cross the dayside magnetopause several times at a large radial distance of about 16 RE. During each of these crossings, the spacecraft detect high speed plasma jets in the dayside magnetopause and boundary layer. These observations are made during a period of southward and dawnward Interplanetary Magnetic Field (IMF). The magnetic shear across the local magnetopause is ~90° and the magnetosheath beta is very low (~0.15). We evidence the presence of a magnetic field of a few nT along the magnetopause normal. We also show that the plasma jets, accelerated up to 600 km/s, satisfy the tangential stress balance. These findings strongly suggest that the accelerated jets are due to magnetic reconnection between interplanetary and terrestrial magnetic field lines northward of the satellites. This is confirmed by the analysis of the ion distribution function that exhibits the presence of D shaped distributions and of a reflected ion population as predicted by theory. A quantitative analysis of the reflected ion population reveals that the reconnection process lasts about 30 min in a reconnection site located at a very large distance of several tens RE from the Cluster spacecraft. We also estimate the magnetopause motion and thickness during this event. This paper gives the first experimental study of magnetic reconnection during such rare periods of very low solar wind density. The results are discussed in the frame of magnetospheric response to extremely low solar wind density conditions.


Sign in / Sign up

Export Citation Format

Share Document