scholarly journals Volcanic Impacts Dominate Bidecadal‐Multidecadal Temperature Variations During the Late Holocene in Northern Fennoscandia

2019 ◽  
Vol 124 (22) ◽  
pp. 11661-11671 ◽  
Author(s):  
Juhani Rinne ◽  
Mikko Alestalo
2009 ◽  
Vol 5 (3) ◽  
pp. 1659-1696 ◽  
Author(s):  
Q. Zhang ◽  
H. Sundqvist ◽  
A. Moberg ◽  
K. Holmgren ◽  
H. Körnich ◽  
...  

Abstract. The solar orbital forcing induced changes in insolation at the mid-Holocene compared to the late Holocene, which causes an amplification of the seasonal cycle in the Northern Hemisphere in the earlier period. The climate response over northern high latitudes, to this change in forcing has been investigated in three types of PMIP (Paleoclimate Modelling Intercomparison Project) simulations with different complexity of the climate system. The model results have also been compared with available reconstructions from temperature proxy data. Both the reconstructions and the PMIP2 models show a warm response in annual mean temperature, as well as in summer and winter temperature. The model-model comparisons indicate the importance of including the different physical feedbacks (ocean, sea-ice, vegetation) in the climate model. An objective selection method is applied in the model-data comparison to evaluate the capability of the climate model in reproducing the spatial response pattern. The comparisons between the reconstructions and the best-fit selected simulations show that over the northern high latitudes, summer temperature change follows closely to the insolation and shows a common feature with strong warming over land and relatively weak warming over ocean. A pronounced warming centre is found over Barents Sea in winter in model simulations, which is also supported by the nearby northern Eurasian continental reconstructions. The warming over Barents Sea corresponds to a positive North Atlantic Oscillation (NAO). The strengthened sea level pressure gradient may have caused a northward shift of the Atlantic storm track. It results in enhanced westerlies towards the northern Eurasia, which may be responsible for the winter warming over northern Fennoscandia and northern Siberia.


The Holocene ◽  
2010 ◽  
Vol 20 (5) ◽  
pp. 659-666 ◽  
Author(s):  
Diana Krawczyk ◽  
Andrzej Witkowski ◽  
Matthias Moros ◽  
Jeremy Lloyd ◽  
Antoon Kuijpers ◽  
...  

1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


Author(s):  
D. M. Davies ◽  
R. Kemner ◽  
E. F. Fullam

All serious electron microscopists at one time or another have been concerned with the cleanliness and freedom from artifacts of thin film specimen support substrates. This is particularly important where there are relatively few particles of a sample to be found for study, as in the case of micrometeorite collections. For the deposition of such celestial garbage through the use of balloons, rockets, and aircraft, the thin film substrates must have not only all the attributes necessary for use in the electron microscope, but also be able to withstand rather wide temperature variations at high altitude, vibration and shock inherent in the collection vehicle's operation and occasionally an unscheduled violent landing.Nitrocellulose has been selected as a film forming material that meets these requirements yet lends itself to a relatively simple clean-up procedure to remove particulate contaminants. A 1% nitrocellulose solution is prepared by dissolving “Parlodion” in redistilled amyl acetate from which all moisture has been removed.


Sign in / Sign up

Export Citation Format

Share Document