scholarly journals Subcore Scale Fluid Flow Behavior in a Sandstone With Cataclastic Deformation Bands

2020 ◽  
Vol 56 (4) ◽  
Author(s):  
Carla R. Romano ◽  
Christopher Zahasky ◽  
Charlotte Garing ◽  
James M. Minto ◽  
Sally M. Benson ◽  
...  
2017 ◽  
Vol 34 (5) ◽  
pp. 667-678 ◽  
Author(s):  
H. Nowruzi ◽  
H. Ghassemi

AbstractNano-nozzles are an essential part of the nano electromechanical systems (NEMS). Cross-sectional geometry of nano-nozzles has a significant role on the fluid flow inside them. So, main purpose of the present study is related to the effects of different symmetrical cross-sections on the fluid flow behavior inside of nano-nozzles. To this accomplishment, five different cross-sectional geometries (equilateral triangle, square, regular hexagon, elliptical and circular) are investigated by using molecular dynamics (MD) simulation. In addition, TIP4P is used for atomistic water model. In order to evaluate the fluid flow behavior, non-dimensional physical parameters such as Fanning friction factor, velocity profile and density number are analyzed. Obtained results are shown that the flow behavior characteristics appreciably depend on the geometry of nano-nozzle's cross-section. Velocity profile and density number for five different cross sections of nano-nozzle at three various measurement gauges are presented and discussed.


2000 ◽  
Author(s):  
Bixia Li ◽  
Timothy L. Norman

Abstract In this study, rat femurs were used to test the diffusion and mechanical transport properties of a fluroscein stain tracer in microvessels of bone. Fluroscein was used as a tracer to visualize the fluid flow behavior using confocal microscopy. It was found that stain transport occurs due to diffusion under static conditions and due to mechanical loading. The transport increased with cyclic load level and frequency. Our results also show that stain transport at the canaliculi level occurs rapidly in rat bone.


2007 ◽  
Vol 47 (6) ◽  
pp. 840-846 ◽  
Author(s):  
Toru Kato ◽  
Masashi Hara ◽  
Akifumi Muto ◽  
Sei Hiraki ◽  
Masayuki Kawamoto

Author(s):  
Zhongwei Huang ◽  
Gensheng Li ◽  
Shouceng Tian ◽  
Xianzhi Song ◽  
Mao Sheng ◽  
...  

Volume 3 ◽  
2004 ◽  
Author(s):  
Ke-Min Liao ◽  
Rongshun Chen ◽  
Bruce C. S. Chou

In this study, a novel thermal-bubble-based micromachined accelerometer with advantages of no proof mass, preferable frequency response, and high sensitivity is presented. Unlike the other techniques, the only moving element in the proposed device is a small thermal-bubble created by using a high flux heater to vaporize the liquid contained in the micro chamber. In order to improve the performance of the accelerometer, the basic physical characteristics of this sensor have been analyzed. Numerical simulations are conducted to study the heat transfer and fluid flow behavior of the device and to demonstrate the feasibility of our design. The temperature profile and the velocity field distribution under different applied acceleration have been acquired. Moreover, a method for manufacturing the accelerometer by using the techniques of micromachining is provided and the performance of the presented design has been examined. The results concluded that the proposed design has better response and sensitivity comparing to its counterparts.


Sign in / Sign up

Export Citation Format

Share Document