Vertical propagation of coseismic ionospheric disturbances associated with the foreshock of the Tohoku Earthquake observed using HF Doppler sounding

Author(s):  
H. Nakata ◽  
K. Takaboshi ◽  
T. Takano ◽  
I. Tomizawa
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1000
Author(s):  
Jin Wang ◽  
Gang Chen ◽  
Tao Yu ◽  
Zhongxin Deng ◽  
Xiangxiang Yan ◽  
...  

The 2011 Tohoku earthquake and the following enormous tsunami caused great disturbances in the ionosphere that were observed in various regions along the Pacific Ocean. In this study, the oblique-incidence ionosonde detection network located in North China was applied to investigate the inland ionospheric disturbances related to the 2011 tsunamigenic earthquake. The ionosonde network consists of five transmitters and 20 receivers and can monitor regional ionosphere disturbances continuously and effectively. Based on the recorded electron density variations along the horizontal plane, the planar middle-scale ionospheric disturbances (MSTIDs) associated with the 2011 Tohoku tsunamigenic earthquake were detected more than 2000 km west of the epicenter about six hours later. The MSTIDs captured by the Digisonde, high-frequency (HF) Doppler measurement, and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellite provided more information about the far-field inland propagation characteristics of the westward propagating gravity waves. The results imply that the ionosonde network has the potential for remote sensing of ionospheric disturbances induced by tsunamigenic earthquakes and provide a perspective for investigating the propagation process of associated gravity waves.


Radio Science ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 507-514 ◽  
Author(s):  
Geoff Crowley ◽  
Irfan Azeem ◽  
Adam Reynolds ◽  
Timothy M. Duly ◽  
Patrick McBride ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2948 ◽  
Author(s):  
Seonho Kang ◽  
Junesol Song ◽  
Deokhwa Han ◽  
Bugyeom Kim ◽  
Hyoungmin So ◽  
...  

Earthquakes generate energy that propagates into the ionosphere and incurs co-seismic ionospheric disturbances (CIDs), which can be observed in ionospheric delay measurements. In most cases, the CID has a weak signal strength, because the energy in the atmosphere transferred from the earthquake dissipates as it travels toward the ionosphere. It is particularly hard to observe at reference stations that are located far from the epicenter. As the number of Global Navigation Satellite System stations and their positions are restricted, it is important to employ weak CID data in the analysis by improving the detection performance of CIDs. In this study, we suggest a new method of detecting CIDs, which mainly uses a sequential measurement combination of the carrier phase-based ionospheric delay data, with a 1-second interval. The proposed method’s performance was compared with conventional methods, including band-pass filters and a representative time-derivative method, using data from the 2011 Tohoku earthquake. As a result, the maximum CID-to-noise ratio can be increased by a maximum of 13% when the proposed method is used, and consequently, the detection performance of the CID can be improved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boris Maletckii ◽  
Elvira Astafyeva

AbstractEarthquakes are known to generate ionospheric disturbances that are commonly referred to as co-seismic travelling ionospheric disturbances (CTID). In this work, for the first time, we present a novel method that enables to automatically detect CTID in ionospheric GNSS-data, and to determine their spatio-temporal characteristics (velocity and azimuth of propagation) in near-real time (NRT), i.e., less than 15 min after an earthquake. The obtained instantaneous velocities allow us to understand the evolution of CTID and to estimate the location of the CTID source in NRT. Furthermore, also for the first time, we developed a concept of real-time travel-time diagrams that aid to verify the correlation with the source and to estimate additionally the propagation speed of the observed CTID. We apply our methods to the Mw7.4 Sanriku earthquake of 09/03/2011 and the Mw9.0 Tohoku earthquake of 11/03/2011, and we make a NRT analysis of the dynamics of CTID driven by these seismic events. We show that the best results are achieved with high-rate 1 Hz data. While the first tests are made on CTID, our method is also applicable for detection and determining of spatio-temporal characteristics of other travelling ionospheric disturbances that often occur in the ionosphere driven by many geophysical phenomena.


Author(s):  
N.P. Perevalova ◽  
◽  
N.V. Shestakov ◽  
S.V. Voeykov ◽  
V.G. Bykov ◽  
...  

2016 ◽  
Author(s):  
L. Tang ◽  
Y. Zhao ◽  
J. An

Abstract. The straight tsunami waves from epicenter can be reflected when they reach to coasts or underwater obstacles. In this study, we present the first ionospheric maps of reflected tsunami signature caused by the great 11 March 2011 Tohoku earthquake using the dense GPS network GEONET in Japan. We observed tsunami-like travelling ionospheric disturbances (TIDs) with similar propagation characteristics in terms of waveform, horizontal velocity, direction, period and arrival time compared to the reflected tsunami at the sea-level, indicating the TIDs are induced by the reflected tsunami. The results confirm the atmospheric internal gravity waves (IGWs) produced by reflected tsunami can also propagate upward to the atmosphere and interact with the plasma at the ionospheric height.


Sign in / Sign up

Export Citation Format

Share Document