scholarly journals Potential Impacts of Supersonic Aircraft Emissions on Ozone and Resulting Forcing on Climate: An Update on Historical Analysis

2021 ◽  
Vol 126 (6) ◽  
Author(s):  
Jun Zhang ◽  
Donald Wuebbles ◽  
Douglas Kinnison ◽  
Steven L. Baughcum
2007 ◽  
Vol 7 (1) ◽  
pp. 2531-2560 ◽  
Author(s):  
O. A. Søvde ◽  
M. Gauss ◽  
I. S. A. Isaksen ◽  
G. Pitari ◽  
C. Marizy

Abstract. Impacts of NOx, H2O and aerosol emissions from a projected 2050 aircraft fleet, provided in the EU project SCENIC, are investigated using the Oslo CTM2, a 3-D chemical transport model including comprehensive chemistry for the stratosphere and the troposphere. The aircraft emission scenarios comprise emissions from subsonic and supersonic aircraft. The increases in NOy due to emissions from the mixed fleet are comparable for subsonic (at 11–12 km) and supersonic (at 18–20 km) aircraft, with annual zonal means of 1.35 ppbv and 0.83 ppbv, respectively. H2O increases are also comparable at these altitudes: 630 and 599 ppbv, respectively. The aircraft emissions increase tropospheric ozone by about 10 ppbv in the Northern Hemisphere due to increased ozone production, mainly because of subsonic aircraft. Supersonic aircraft contribute to a reduction of stratospheric ozone due to increased ozone loss at higher altitudes. In the Northern Hemisphere the reduction is about 39 ppbv, but also in the Southern Hemisphere a 22 ppbv stratospheric decrease is modeled due to transport of supersonic aircraft emissions and ozone depleted air. The total ozone column is increased in lower and Northern mid-latitudes, otherwise the increase of ozone loss contributes to a decrease of the total ozone column. Two exceptions are the Northern Hemispheric spring, where the ozone loss increase is small due to transport processes, and tropical latitudes during summer where the effect of subsonic aircraft is low due to a high tropopause. Aerosol particles emitted by aircraft reduce both aircraft and background NOx, more than counterweighting the effect of NOx and H2O aircraft emissions in the stratosphere. Above about 20 km altitude, the NOx (and thus ozone loss) reduction is large enough to give an increase in ozone due to aircraft emissions. This effect is comparable in the Northern and Southern Hemisphere. At 11–20 km altitude, however, ozone production is reduced due to less NOx. Also ClONO2 is increased at this altitude due to enhanced heterogeneous reactions (lowered HCl), and ClO is increased due to less NOx, further enhancing ozone loss in this region. This results in a 14 ppbv further reduction of ozone. Mainly, this results in an increase of the total ozone column due to a decrease in ozone loss caused by the NOx cycle (at the highest altitudes). At the lowermost latitudes, the reduced loss due to the NOx cycle is small. However, ozone production at lower altitudes is reduced and the loss due to ClO is increased, giving a decrease in the total ozone column. Also, at high latitudes during spring the heterogeneous chemistry is more efficient on PSCs, increasing the ozone loss.


2008 ◽  
Vol 8 (2) ◽  
pp. 5091-5135 ◽  
Author(s):  
G. Pitari ◽  
D. Iachetti ◽  
E. Mancini ◽  
V. Montanaro ◽  
C. Marizy ◽  
...  

Abstract. In this work we focus on the direct radiative forcing (RF) of black carbon (BC) and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O) and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD) are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2) and particles (H2O-H2SO4). Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs), using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index), Mach number, range and cruising altitude. From our baseline modelling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2). This paper discusses the similarities and differences amongst the participating models in terms of O3 precursors changes due to aircraft emissions (NOx, HOx,Clx,Brx) and stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4±0.3 DU, with a net radiative forcing (IR+UV) of −2.5±2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal efficiency from the aircraft emission regions by large scale transport.


2008 ◽  
Vol 8 (14) ◽  
pp. 4069-4084 ◽  
Author(s):  
G. Pitari ◽  
D. Iachetti ◽  
E. Mancini ◽  
V. Montanaro ◽  
N. De Luca ◽  
...  

Abstract. In this work we focus on the direct radiative forcing (RF) of black carbon (BC) and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O) and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD) are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2) and particles (H2O–H2SO4). Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs), using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index), Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2). This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx) and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV) of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal efficiency from the aircraft emission regions by large scale transport.


2013 ◽  
pp. 4-23 ◽  
Author(s):  
V. Mau

The paper deals with the trends in the world and Russian economies towards development of a new post-crisis system, including technological and structural transformation. Three main scenarios of Russian economic development (conservative, innovation and acceleration) are discussed basing on historical analysis of Russian economic performance since 1970-s when oil boom started. On this basis key challenges of economic policy in 2013 are discussed.


2019 ◽  
pp. 59-66
Author(s):  
Ksenia I. Nechaeva

The current state of the Moscow Metro station of the first priority that became operational in 1935 does not allow it to be called a cultural heritage site. This is due to the fact that lighting modernisation carried out by the Moscow Metro was based on fluorescent lamps. Such lamps are more energy efficient compared to incandescent lamps, which were used in original lighting devices specified in the Station Lighting Project developed by architects and designers. However, they significantly changed the station appearance, transforming the originally designed station with entire well visible architectural tectonics?1 from the standpoint of lighting into a simple, flat, unremarkable, and little loaded station of the Moscow Metro./br> This paper describes a method of lighting reconstruction at Krasnoselskaya station by means of original lighting devices that meet modern standards and requirements for cultural heritage sites. The historical analysis on the development of the station lighting environment was conducted during its operation in order to understand what kind of station was conceived by its architects, what changes occurred with its lighting over time, and how it influenced the station appearance and safety of passenger transportation.


Sign in / Sign up

Export Citation Format

Share Document