scholarly journals Sentinel‐based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai‐Tibet Plateau

2021 ◽  
Author(s):  
Zhiqiang Wei ◽  
Zhiheng Du ◽  
Lei Wang ◽  
Jiahui Lin ◽  
Yaru Feng ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2269
Author(s):  
Jinlong Li ◽  
Wei Wang ◽  
Dahao Wang ◽  
Jiaqi Li ◽  
Jie Dong

Thermokarst lakes are a ubiquitous landscape feature that impact the thermal state, hydrological process, ecological environment, and engineering stability of the permafrost. This study established the hydrochemistry and stable isotope (δ18O and δD) variations of lake water and groundwater in a typical basin located in the central Qinghai–Tibet Plateau (QTP) of China. The results showed that most water samples could be classified as slightly alkaline, with high levels of salinity and hardness, while the dominant water types were HCO3-CO3 and Cl types. Natural hydrochemical processes, such as mineral dissolution, cation exchange, and groundwater evaporation, had strong impacts on the groundwater chemistry in this region. Dissolution of halite and carbonate minerals causes the major reactions controlling water chemistry in this basin. Additionally, the calculation of the saturation index (SI) values suggested that aragonite, calcite, and dolomite are saturated, while halite is not. Based on the analysis of the stable isotope characteristics, atmospheric precipitation, groundwater, and meltwater from the permafrost are the major sources of thermokarst lakes. Moreover, the evaporation-to-inflow ratio (E/I) indicated that all of the lakes continuously expanded and rapidly developed. Overall, groundwater is an crucial source of lake recharge and its hydrochemical characteristics also have a certain impact on lake water quality.


Geomorphology ◽  
2011 ◽  
Vol 132 (3-4) ◽  
pp. 222-233 ◽  
Author(s):  
Fujun Niu ◽  
Zhanju Lin ◽  
Hua Liu ◽  
Jiahao Lu

2014 ◽  
Vol 8 (6) ◽  
pp. 6117-6146 ◽  
Author(s):  
X. Pan ◽  
Q. Yu ◽  
Y. You

Abstract. Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai–Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.


2020 ◽  
Vol 41 (18) ◽  
pp. 7042-7067
Author(s):  
Raul-David Șerban ◽  
Huijun Jin ◽  
Mihaela Șerban ◽  
Dongliang Luo ◽  
Qingfeng Wang ◽  
...  

2021 ◽  
Author(s):  
Ze Ren ◽  
Cheng Zhang ◽  
Xia Li ◽  
Kang Ma ◽  
Kexin Feng ◽  
...  

Thermokarst lakes are forming from permafrost thaw and severely affected by accelerating climate change. Sediment and water in these lakes are distinct habitats but closely connected. However, our understanding of the differences and linkages between sediment and water in thermokarst lakes remain largely unknow, especially from the perspective of bacterial community patterns and underlying mechanisms. In this study, we examined bacterial communities in sediment and water in thermokarst lakes in the Yellow River Source area, Qinghai-Tibet Plateau. Bacterial taxa were divided to abundant and rare according to their relative abundance, and the Sorensen dissimilarity (βsor) was partitioned into turnover (βturn) and nestedness (βnest). The results showed that the whole bacterial communities as well as the abundant and rare subcommunities differed substantially between sediment and water, in terms of taxonomical composition, α-diversity, and β-diversity. Sediment had significantly lower α-diversity indexes but higher β-diversity than water. Abundant taxa had significantly higher relative abundances but lower α-diversity and β-diversity than rare taxa. Moreover, bacterial communities are predominantly governed by strong turnover processes (βturn/βsor ratio of 0.925). Abundant subcommunities were significantly lower in βturn/βsor ratio compared to rare subcommunities. Bacterial communities in sediment had a significantly higher βturn/βsor ratio than in water. The results suggest that the bacterial communities of thermokarst lakes, especially rare subcommunities or particularly in sediment, might be strongly structured by environmental filtering and geographical isolation, leading to compositional distinct. By revealing bacterial communities in sediment and water, this integral study increased our current knowledge of thermokarst lakes, enhancing our understanding of the community assembly rules and ecosystem structures and processes of these rapid changing and vulnerable ecosystems.


Sign in / Sign up

Export Citation Format

Share Document