scholarly journals Faults in Oceanic Crust Contribute to Slow Seismic Waves

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Sarah Derouin

New high-sampling rate measurements of fluid pressures in oceanic crust reveal unresolved fractures and pathways for fluid flow.

Author(s):  
Paolo Ghelfi ◽  
Lingmei Ma ◽  
Xiaoxia Wu ◽  
Minyu Yao ◽  
Alan E. Willner ◽  
...  

Ocean Science ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 17-28 ◽  
Author(s):  
H. van Haren ◽  
R. Groenewegen ◽  
M. Laan ◽  
B. Koster

Abstract. A high sampling rate (1 Hz) thermistor string has been built to accommodate the scientific need to accurately monitor high-frequency and vigorous internal wave and overturning processes in the ocean. The thermistors and their custom designed electronics can register temperature at an estimated precision of about 0.001° C with a response time faster than 0.25 s down to depths of 6000 m. With a quick in situ calibration using SBE 911 CTD an absolute accuracy of 0.005° C is obtained. The present string holds 128 sensors at 0.5 m intervals, which are all read-out within 0.5 s. When sampling at 1 Hz, the batteries and the memory capacity of the recorder allow for deployments of up to 2 weeks. In this paper, the instrument is described in some detail. Its performance is illustrated with examples from the first moored observations, which show Kelvin-Helmholtz overturning and very high-frequency (Doppler-shifted) internal waves besides occasionally large turbulent bores moving up the sloping side of Great Meteor Seamount, Canary Basin, North-Atlantic Ocean.


Author(s):  
Huageng Luo ◽  
Roengchai Chumai ◽  
Nicolas Peton ◽  
Brian Howard ◽  
Arun Menon

Torsional vibration excitation in rotating machinery can cause system reliability issues or even catastrophic failures. Torsional vibration detection and monitoring becomes an important step in rotating machinery condition monitoring, especially for those machines driven by a variable frequency drive (VFD), a pulse width modulation motor (PWM), or a synchronous motor (SM), etc. Traditionally, the torsional vibration is detected by a phase demodulation process applied to the signals generated by tooth wheels or optical encoders. This demodulation based method has a few unfavorable issues: the installation of the tooth wheels needs to interrupt the machinery normal operation; the installation of the optical barcode is relatively easier, however, it suffers from short term survivability in harsh industrial environments. The geometric irregularities in the tooth wheel and the end discontinuity in the optical encoder will sometimes introduce overwhelming contaminations from shaft order response and its harmonics. In addition, the Hilbert Transform based phase demodulation technique has inevitable errors caused by the edge effect in FFT and IFFT analyses. Fortunately, in many industrial rotating machinery applications, the torsional vibration resonant frequency is usually low and the Keyphasor® and/or encoder for speed monitoring is readily available. Thus, it is feasible to use existing hardware for torsional vibration detection. In this paper, we present a signal processing approach which used the Keyphasor/encoder data digitized by a high sampling rate and high digitization resolution analog-to-digital (A/D) convertor to evaluate the torsional vibration directly. A wavelet decomposition (WD) based method was used to separate the torsional vibration from the shaft speed, so that the time history of the torsional vibrations can be extracted without significant distortions. The developed approach was then validated through a synchronous motor fan drive and an industrial power generation system. Detailed results are presented and discussed in this paper.


Measurement ◽  
2020 ◽  
Vol 166 ◽  
pp. 108175
Author(s):  
Yijiu Zhao ◽  
Houjun Wang ◽  
Yanze Zheng ◽  
Yi Zhuang ◽  
Naixin Zhou

2019 ◽  
Vol 55 (6) ◽  
pp. 720-726 ◽  
Author(s):  
F. V. Perederin ◽  
I. M. Aleshin ◽  
S. D. Ivanov ◽  
P. S. Mikhailov ◽  
V. V. Pogorelov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document