scholarly journals Oscillatory loading can alter the velocity dependence of ice‐on‐rock friction

Author(s):  
Rob M. Skarbek ◽  
Christine McCarthy ◽  
Heather M. Savage
Author(s):  
C. McCarthy ◽  
H. Savage ◽  
M. Nettles

Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s −1 and normal stress σ n  = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ  = 0.52 at −20°C to μ  = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’.


1973 ◽  
Vol 28 (3-4) ◽  
pp. 428-437
Author(s):  
G. Ecker

AbstractThe motion is depicted as a sequence of steps of a finite residence time.The spot motion affects essentially only the energy characteristics Te which in comparison to the stationary characteristics Tes are shifted to smaller values. Hereby the critical currents I0, I1 are raised in comparison to the corresponding stationary limits I0s, I1s. Particularly attractive are the phenomena found in connection with the dependence of the spot velocity ʋ on the spot current I. If the spot velocity increases with the spot current stronger than ʋ ∞ I1/2 then the E-diagram reveals the existence of an upper limit lu for the spot current. This result can be used to explain qualitatively the experimentally observed phenomena of "spot multiplicity" and “spot extinction”.Quantitative conclusions are obstructed by the lack of knowledge about the velocity dependence on the spot current, ʋ(I). Experimental and theoretical studies to provide a better understanding of the physical background and the analytical laws describing the motion of the cathode spots are urgently needed.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Koji Masuda

Abstract Earthquake magnitude is closely related to the depth extent of the seismogenic zone, and higher magnitude earthquakes occur where the seismogenic zone is thicker. The frictional properties of the dominant mineral constituents of the crust, such as feldspar-group minerals, control the depth extent of the seismogenic zone. Here, the velocity dependence of the steady-state friction of anorthite, the calcic endmember of the feldspar mineral series, was measured at temperatures from 20 to 600 °C, pore pressures of 0 (“dry”) and 50 MPa (“wet”), and an effective pressure of 150 MPa. The results support previous findings that the frictional properties of feldspar play a dominant role in limiting the depth extent of the seismogenic zone. This evidence suggests that brittle deformation of anorthite may be responsible for brittle fault movements in the brittle–plastic transition zone.


Author(s):  
T. Yoshikawa ◽  
N. Takagi ◽  
T. Kanakugi ◽  
H. Schulz ◽  
H.-C. Scheer ◽  
...  

2017 ◽  
Vol 155 (5) ◽  
pp. 1089-1104 ◽  
Author(s):  
BIN DENG ◽  
LEI JIANG ◽  
GAOPING ZHAO ◽  
RUI HUANG ◽  
YUANBO WANG ◽  
...  

AbstractAlthough the brittle material in analogue models is characterized by a linear Navier-Coulomb behaviour and rate-independent deformation, the geometry and style of deformation in accretionary wedges is sensitive to shortening velocity. In this study we have constructed a series of analogue models with various shortening velocities in order to study the influence of shortening velocity on the geometry and kinematics of accretionary wedges. Model results illustrate how shortening velocity has an important influence on the geometry and kinematics of the resulting wedge. In general, for models having similar bulk shortening, the accretionary wedges with higher velocities of shortening are roughly steeper, higher and longer, as well as having larger critical wedge angles and height. It accommodates a number of foreland-vergent thrusts, larger fault spacing and displacement rates than those of low- to medium-velocity shortening, which indicates a weak velocity-dependence in geometry of the wedge. Moreover, models with a high velocity of shortening undergo larger amounts of volumetric strain and total layer-parallel shortening than models with low- to medium-velocity shortening. The former accommodate a greater development of back thrusts and asymmetric structures; a backwards-to-forwards style of wedge growth therefore occurs in the frontal zone under high-velocity shortening.


Sign in / Sign up

Export Citation Format

Share Document