scholarly journals How sea ice drift influences sea ice area and volume

Author(s):  
T. J. W. Wagner ◽  
I. Eisenman ◽  
H. C. Mason
2016 ◽  
Vol 8 (5) ◽  
pp. 397 ◽  
Author(s):  
Yufang Ye ◽  
Mohammed Shokr ◽  
Georg Heygster ◽  
Gunnar Spreen

2021 ◽  
Author(s):  
Angelina Cassianides ◽  
Camillie Lique ◽  
Anton Korosov

<p>In the global ocean, mesoscale eddies are routinely observed from satellite observation. In the Arctic Ocean, however, their observation is impeded by the presence of sea ice, although there is a growing recognition that eddy may be important for the evolution of the sea ice cover. In this talk, we will present a new method of surface ocean eddy detection based on their signature in sea ice vorticity retrieved from Synthetic Aperture Radar (SAR) images. A combination of Feature Tracking and Pattern Matching algorithm is used to compute the sea ice drift from pairs of SAR images. We will mostly focus on the case of one eddy in October 2017 in the marginal ice zone of the Canadian Basin, which was sampled by mooring observations, allowing a detailed description of its characteristics. Although the eddy could not be identified by visual inspection of the SAR images, its signature is revealed as a dipole anomaly in sea ice vorticity, which suggests that the eddy is a dipole composed of a cyclone and an anticyclone, with a horizontal scale of 80-100 km and persisted over a week. We will also discuss the relative contributions of the wind and the surface current to the sea ice vorticity. We anticipate that the robustness of our method will allow us to detect more eddies as more SAR observations become available in the future.</p>


Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 473-483 ◽  
Author(s):  
J. Karvonen

Abstract. An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR) images covering a common area has been developed at FMI. The algorithm has been developed based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two scales (coarse and fine) with some additional constraints. The algorithm has been running operationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available as part of the MyOcean EC project. The SAR-based ice drift vectors have been compared to the drift vectors from drifter buoys in the Baltic Sea during the first operational season, and also these validation results are shown in this paper. Also some navigationally useful sea ice quantities, which can be derived from ice drift vector fields, are presented.


2017 ◽  
Vol 11 (4) ◽  
pp. 1707-1731 ◽  
Author(s):  
Jennifer V. Lukovich ◽  
Cathleen A. Geiger ◽  
David G. Barber

Abstract. A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ∼ 3) to ballistic (α ∼ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Ron Kwok ◽  
Shirley S. Pang ◽  
Sahra Kacimi

Understanding long-term changes in large-scale sea ice drift in the Southern Ocean is of considerable interest given its contribution to ice extent, to ice production in open waters, with associated dense water formation and heat flux to the atmosphere, and thus to the climate system. In this paper, we examine the trends and variability of this ice drift in a 34-year record (1982–2015) derived from satellite observations. Uncertainties in drift (~3 to 4 km day–1) were assessed with higher resolution observations. In a linear model, drift speeds were ~1.4% of the geostrophic wind from reanalyzed sea-level pressure, nearly 50% higher than that of the Arctic. This result suggests an ice cover in the Southern Ocean that is thinner, weaker, and less compact. Geostrophic winds explained all but ~40% of the variance in ice drift. Three spatially distinct drift patterns were shown to be controlled by the location and depth of atmospheric lows centered over the Amundsen, Riiser-Larsen, and Davis seas. Positively correlated changes in sea-level pressures at the three centers (up to 0.64) suggest correlated changes in the wind-driven drift patterns. Seasonal trends in ice edge are linked to trends in meridional winds and also to on-ice/off-ice trends in zonal winds, due to zonal asymmetry of the Antarctic ice cover. Sea ice area export at flux gates that parallel the 1000-m isobath were extended to cover the 34-year record. Interannual variability in ice export in the Ross and Weddell seas linked to the depth and location of the Amundsen Sea and Riiser-Larsen Sea lows to their east. Compared to shorter records, where there was a significant positive trend in Ross Sea ice area flux, the longer 34-year trends of outflow from both seas are now statistically insignificant.


2011 ◽  
Vol 52 (57) ◽  
pp. 1-8 ◽  
Author(s):  
Yasushi Fukamachi ◽  
Kay I. Ohshima ◽  
Yuji Mukai ◽  
Genta Mizuta ◽  
Masaaki Wakatsuchi

AbstractIn the southwestern part of the Sea of Okhotsk off Hokkaido, sea-ice drift characteristics are investigated using the ice and water velocities obtained from a moored upward-looking acoustic Doppler current profiler (ADCP) during the winters of 1999–2001. Using hourly-mean values of these data along with the wind data measured at a nearby coastal station, the wind factor and turning angle of the relative velocity between the ice and water velocities with respect to the wind are calculated assuming free drift under various conditions. Since the simultaneous sea-ice draft data are also available from a moored ice-profiling sonar (IPS), we examine the dependence of drift characteristics on ice thickness for the first time. As ice thickness increases and wind decreases, the wind factor decreases and the turning angle increases, as predicted by the theory of free drift. This study clearly shows the utility of the moored ADCP measurement for studying sea-ice drift, especially with the simultaneous IPS measurement for ice thickness, which cannot be obtained by other methods.


Sign in / Sign up

Export Citation Format

Share Document