scholarly journals The Role of Free‐Tropospheric Moisture Convergence for Summertime Heavy Rainfall in Western Japan

2021 ◽  
Vol 48 (18) ◽  
Author(s):  
Hiroki Tsuji ◽  
Yukari N. Takayabu ◽  
Ryosuke Shibuya ◽  
Hirotaka Kamahori ◽  
Chie Yokoyama
2016 ◽  
Vol 125 (3) ◽  
pp. 475-498 ◽  
Author(s):  
P V Rajesh ◽  
S Pattnaik ◽  
D Rai ◽  
K K Osuri ◽  
U C Mohanty ◽  
...  

2014 ◽  
Vol 57 (5) ◽  
Author(s):  
Nazario Tartaglione ◽  
Rodrigo Caballero

<p>This article investigates the role of sea surface temperature (SST) as well as the effects of evaporation and moisture convergence on the evolution of cyclone Klaus, which occurred on January 23 and 24, 2009. To elucidate the role of sea surface temperature (SST) and air–sea fluxes in the dynamics of the cyclone, ten hydrostatic mesoscale simulations were performed by Bologna Limited Area Model (BOLAM). The first one was a control experiment with European Centre for Medium-Range Weather Forecasts (ECMWF) SST analysis. The nine following simulations are sensitivity experiments where the SST are obtained by adding a constant value by 1 to 9 K to the ECMWF field. Results show that a warmer sea increases the surface latent heat fluxes and the moisture convergence, favoring the development of convection in the storm. Convection is affected immediately by the increased SST. Later on, drop of mean sea level pressure (MSLP) occurs together with increasing of surface winds. The cyclone trajectory is not sensitive to change in SST differently from MSLP and convective precipitation.</p>


2017 ◽  
Vol 78 (1) ◽  
pp. 28-38
Author(s):  
Paweł Franczak

Abstract Mountain streams are subjected to the continuous reshaping of their river beds during floods, with the greatest changes occurring during extreme floods caused by sudden and heavy rainfall. River bed transformations during these flash floods are more severe in forested areas, where wooden logs carried by swollen streams are more likely to be deposited on the ground, which in turn leads to the greater accumulation of other transported material and debris. The study was conducted in the Rybny Potok catchment area (Babia Góra National Park). An extreme flash flood occurred on 15–16 May 2014 because of heavy rainfall, which, on 15 May amounted to 138 mm. The total amount of precipitation in the catchment area was 216.5 mm in three days. This resulted in sudden and full streams in spate, contributing to significant geomorphological transformations reaching all the way to the bottom of the river beds. During the flash flood, already established river beds and streams increased in size and many new river courses were formed.


2018 ◽  
Vol 20 (1) ◽  
pp. e880 ◽  
Author(s):  
Ryuji Yoshida ◽  
Seiya Nishizawa ◽  
Hisashi Yashiro ◽  
Sachiho A. Adachi ◽  
Tsuyoshi Yamaura ◽  
...  

2017 ◽  
Vol 143 (703) ◽  
pp. 986-998 ◽  
Author(s):  
Anupam Hazra ◽  
Hemantkumar S. Chaudhari ◽  
Manish Ranalkar ◽  
Jen-Ping Chen

2017 ◽  
Vol 38 ◽  
pp. e569-e576 ◽  
Author(s):  
Anu Xavier ◽  
Ajil Kottayil ◽  
K. Mohanakumar ◽  
Prince K. Xavier

2020 ◽  
pp. 1-47
Author(s):  
Chenli Wang ◽  
Kun Zhao ◽  
Anning Huang ◽  
Xingchao Chen ◽  
Xiaona Rao

AbstractSouth China coast suffers frequent heavy rainfall every warm-season. Based on the objective classification method of principle components analysis, the key role of synoptic pattern in determining the heavy rainfall processes occurred over the South China coast in warm season during 2008-2018 is examined in this study. We found heavy rainfall occurs most frequently under three typical synoptic patterns (P1-P3 hereafter) characterized by strong low-level onshore winds. P1 and P3 are featured by a prevailing southwesterly monsoonal flow in the lower troposphere, with heavy rainfall frequently occurring over the inland windward region in the afternoon associated with the orographic lifting and solar heating. The onshore wind of P3 is stronger than P1 as the western Pacific subtropical high extends more westward to 122°E, which induces stronger low-level convergence along the coastline than P1 when the ageostrophic wind veers from offshore to onshore direction in the early morning. Hence, a secondary early morning rainfall peak can be found along the coastline. P2 is characterized by a low-level vortex located over the southwest of south China. Heavy rainfall under P2 usually initiate over the western part of the coastal region in the morning and then propagate towards inland in the afternoon. Overall, the synoptic patterns strongly determine the spatial distribution and diurnal cycle of heavy rainfall over the South China coast. It is closely related to the diurnally varying low-level onshore winds rather than the low-level jets, as well as the different interactions between the low-level onshore winds and the local orography, coastline and land-sea breeze circulations under different synoptic patterns.


Sign in / Sign up

Export Citation Format

Share Document