Thermospheric Traveling Atmospheric Disturbances in Austral Winter from GOCE and CHAMP

Author(s):  
Shuang Xu ◽  
Sharon L. Vadas ◽  
Jia Yue
Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Christina Oikonomou ◽  
Haris Haralambous ◽  
Sergey Pulinets ◽  
Aakriti Khadka ◽  
Shukra R. Paudel ◽  
...  

The purpose of the present study is to investigate simultaneously pre-earthquake ionospheric and atmospheric disturbances by the application of different methodologies, with the ultimate aim to detect their possible link with the impending seismic event. Three large earthquakes in Mexico are selected (8.2 Mw, 7.1 Mw and 6.6 Mw during 8 and 19 September 2017 and 21 January 2016 respectively), while ionospheric variations during the entire year 2017 prior to 37 earthquakes are also examined. In particular, Total Electron Content (TEC) retrieved from Global Navigation Satellite System (GNSS) networks and Atmospheric Chemical Potential (ACP) variations extracted from an atmospheric model are analyzed by performing statistical and spectral analysis on TEC measurements with the aid of Global Ionospheric Maps (GIMs), Ionospheric Precursor Mask (IPM) methodology and time series and regional maps of ACP. It is found that both large and short scale ionospheric anomalies occurring from few hours to a few days prior to the seismic events may be linked to the forthcoming events and most of them are nearly concurrent with atmospheric anomalies happening during the same day. This analysis also highlights that even in low-latitude areas it is possible to discern pre-earthquake ionospheric disturbances possibly linked with the imminent seismic events.


2021 ◽  
Vol 13 (5) ◽  
pp. 890
Author(s):  
Aleksandra Nina ◽  
Milan Radovanović ◽  
Luka Č. Popović

Atmospheric properties have a significant influence on electromagnetic (EM) waves, including the propagation of EM signals used for remote sensing. For this reason, changes in the received amplitudes and phases of these signals can be used for the detection of the atmospheric disturbances and, consequently, for their investigation. Some of the most important sources of the temporal and space variations in the atmospheric parameters come from the outer space. Although the solar radiation dominates in these processes, radiation coming out of the solar system also can induces enough intensive disturbance in the atmosphere to provide deflections in the EM signal propagation paths. The aim of this issue is to present the latest research linking events and processes in outer space with changes in the propagation of the satellite and ground-based signals used in remote sensing.


Author(s):  
Xu Yang ◽  
Zhaohui Shang ◽  
Keliang Hu ◽  
Yi Hu ◽  
Bin Ma ◽  
...  

Abstract Dome A in Antarctica has many characteristics that make it an excellent site for astronomical observations, from the optical to the terahertz. Quantitative site testing is still needed to confirm the site’s properties. In this paper, we present a statistical analysis of cloud cover and aurora contamination from the Kunlun Cloud and Aurora Monitor (KLCAM). KLCAM is an automatic, unattended all-sky camera aiming for long-term monitoring of the usable observing time and optical sky background at Dome A. It was installed at Dome A in January 2017, worked through the austral winter, and collected over 47,000 images over 490 days. A semi-quantitative visual data analysis of cloud cover and auroral contamination was carried out by five individuals. The analysis shows that the night sky was free of clouds for 83 per cent of the time, which ranks Dome A highly in a comparison with other observatory sites. Although aurorae were detected somewhere on an image for nearly 45 per cent of the time, the chance of a point on the sky being affected by an aurora is small. The strongest auroral emission lines can be filtered out with customized filters.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 499 ◽  
Author(s):  
Artem Shikhovtsev ◽  
Pavel Kovadlo ◽  
Vladimir Lukin

The paper focuses on the development of the method to estimate the mean characteristics of the atmospheric turbulence. Using an approach based on the shape of the energy spectrum of atmospheric turbulence over a wide range of spatial and temporal scales, the vertical profiles of optical turbulence are calculated. The temporal variability of the vertical profiles of turbulence under different low-frequency atmospheric disturbances is considered.


2017 ◽  
Vol 40 (6) ◽  
pp. 1592-1606 ◽  
Author(s):  
Laura Farías ◽  
Karen Sanzana ◽  
Sandra Sanhueza-Guevara ◽  
Mariela A. Yevenes

2011 ◽  
Vol 29 (8) ◽  
pp. 1355-1363 ◽  
Author(s):  
H. T. Cai ◽  
F. Yin ◽  
S. Y. Ma ◽  
I. W. McCrea

Abstract. In this paper, we present observational evidence for the trans-polar propagation of large-scale Traveling Ionospheric Disturbances (TIDs) from their nightside source region to the dayside. On 13 February 2001, the 32 m dish of EISCAT Svalbard Radar (ESR) was directing toward the geomagnetic pole at low elevation (30°) during the interval 06:00–12:00 UT (MLT ≈ UT + 3 h), providing an excellent opportunity to monitor the ionosphere F-region over the polar cap. The TIDs were first detected by the ESR over the dayside north polar cap, propagating equatorward, and were subsequently seen by the mainland UHF radar at auroral latitudes around geomagnetic local noon. The propagation properties of the observed ionization waves suggest the presence of a moderately large-scale TIDs, propagating across the northern polar cap from the night-time auroral source during substorm conditions. Our results agree with the theoretical simulations by Balthazor and Moffett (1999) in which poleward-propagating large-scale traveling atmospheric disturbances were found to be self-consistently driven by enhancements in auroral heating.


Sign in / Sign up

Export Citation Format

Share Document