Ekman transport as the driver of extreme interannual formation rates of Eighteen Degree Water

Author(s):  
Ke Li ◽  
Guillaume Maze ◽  
Herlé Mercier
Keyword(s):  
Author(s):  
Siswanto ◽  
Suratno

The influence of monsoonal wind to coastal upwelling mechanism which is generated by Ekman transport was studied here by analyzing wind stress curl (WSC) distribution over Java-Bali Sea waters and its surrounding area. Surface wind data were used as input data to calculate curl of wind stress in barotropic model. Confirmation with Corioli effect in the Southern Hemisphere, it could be known that negative curl value has relation with vertical motion of sea water as resulted by Ekman transport. Result of analysis showed that negative curl near coast over Java Sea which is stretching to Lombok Sea occurred in December to April when westerly wind of the North West Monsoon actives. It can be guidance and related with season of coastal upwelling in the region. Reversal condition, the occurrance of coastal upwelling in the south coast of JAva island related with the negative value of WSC that occurs since easterlies wind take place in May to August as a part of South East Monsoon episode. Generally, upwelling occurrance in the field of study is a response to the Monsoon circulation. This study with related data such as sea surface temperature, chlorophyll concetration and mixed layer depth that derived from satellite imaging data National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR), Aqua/Modis and sea viewing Wide Field-of-view Sensor(Sea WiFS) shows as magnificent confirmation pattern. So applying WSC to recoqnize upwelling zone is alternatively way as climatic approach to maps potential fertilizing of sea water in maritime-continent Indonesia. Key words: coastal upwelling, Ekman transport, Java-Bali Sea, Monsoon circulation, upwelling.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Sarah-Anne Nicholson ◽  
Daniel B. Whitt ◽  
Ilker Fer ◽  
Marcel D. du Plessis ◽  
Alice D. Lebéhot ◽  
...  

AbstractThe subpolar Southern Ocean is a critical region where CO2 outgassing influences the global mean air-sea CO2 flux (FCO2). However, the processes controlling the outgassing remain elusive. We show, using a multi-glider dataset combining FCO2 and ocean turbulence, that the air-sea gradient of CO2 (∆pCO2) is modulated by synoptic storm-driven ocean variability (20 µatm, 1–10 days) through two processes. Ekman transport explains 60% of the variability, and entrainment drives strong episodic CO2 outgassing events of 2–4 mol m−2 yr−1. Extrapolation across the subpolar Southern Ocean using a process model shows how ocean fronts spatially modulate synoptic variability in ∆pCO2 (6 µatm2 average) and how spatial variations in stratification influence synoptic entrainment of deeper carbon into the mixed layer (3.5 mol m−2 yr−1 average). These results not only constrain aliased-driven uncertainties in FCO2 but also the effects of synoptic variability on slower seasonal or longer ocean physics-carbon dynamics.


Author(s):  
Lei Han

AbstractThe meridional overturning circulation (MOC) seasonality in the Indian Ocean is investigated with the ocean state estimate product, ECCO v4r3. The vertical movements of water parcels are predominantly due to the heaving of the isopycnals all over the basin except off the western coast. Aided by the linear propagation equation of long baroclinic Rossby waves, the driving factor determining the strength of the seasonal MOC in the Indian Ocean is identified as the zonally-integrated Ekman pumping anomaly, rather than the Ekman transport concluded in earlier studies. A new concept of sloshing MOC is proposed, and its difference with the classic Eulerian MOC leads to the so-called diapycnal MOC. The striking resemblance of the Eulerian and sloshing MOCs implies the seasonal variation of the Eulerian MOC in the Indian Ocean is a sloshing mode. The shallow overturning cells manifest themselves in the diapycnal MOC as the most remarkable structure. New perspectives on the upwelling branch of the shallow overturn in the Indian Ocean are offered based on diapycnal vertical velocity. The discrepancy among the observation-based estimates on the bottom inflow across 32°S of the basin is interpreted with the seasonal sloshing mode. Consequently, the “missing mixing” in the deep Indian Ocean is attributed to the overestimated diapycnal volume fluxes. Decomposition of meridional heat transport (MHT) into sloshing and diapycnal components clearly shows the dominant mechanism of MHT in the Indian Ocean in various seasons.


2020 ◽  
Vol 50 (6) ◽  
pp. 1643-1654
Author(s):  
John M. Huthnance ◽  
Mark E. Inall ◽  
Neil J. Fraser

AbstractEastern boundary currents are some of the most energetic features of the global ocean, contributing significantly to meridional mass, heat, and salt transports. We take a new look at the form of an oceanic slope current in equilibrium with oceanic density gradients. We depth integrate the linearized x and y momentum and continuity equations and assume an equilibrium force balance in the along-slope direction (no along-slope variation in the along-slope flow) and zero cross-slope flow at a coastal boundary. We relate the bottom stress to a bottom velocity via a simple boundary friction law (the precise details are easily modified) and then derive an expression for the slope current velocity by integrating upward including thermal wind shear. This provides an expression for the slope current as a function of depth and of cross-slope coordinate, dependent on the oceanic density field and surface and bottom stresses. This new expression for the slope current allows for more general forms of oceanic density fields than have been treated previously. Wind stress is also now considered. The emphasis here is on understanding the simplified equilibrium force balance rather than the evolution toward that balance. There is a direct relationship between the slope current strength, friction, and along-slope forcing (e.g., wind), and also between the total along-slope forcing and bottom Ekman transport, illustrating that “slippery” bottom boundaries in literature are a direct consequence of unrealistically assuming zero along-slope pressure gradient. We demonstrate the utility of the new expression by comparison with a high-resolution hydrodynamic numerical model.


2015 ◽  
Vol 45 (1) ◽  
pp. 294-312 ◽  
Author(s):  
Jessica Benthuysen ◽  
Leif N. Thomas ◽  
Steven J. Lentz

AbstractModel analyses of an alongshelf flow over a continental shelf and slope reveal upwelling near the shelf break. A stratified, initially uniform, alongshelf flow undergoes a rapid adjustment with notable differences onshore and offshore of the shelf break. Over the shelf, a bottom boundary layer and an offshore bottom Ekman transport develop within an inertial period. Over the slope, the bottom offshore transport is reduced from the shelf’s bottom transport by two processes. First, advection of buoyancy downslope induces vertical mixing, destratifying, and thickening the bottom boundary layer. The downward-tilting isopycnals reduce the geostrophic speed near the bottom. The reduced bottom stress weakens the offshore Ekman transport, a process known as buoyancy shutdown of the Ekman transport. Second, the thickening bottom boundary layer and weakening near-bottom speeds are balanced by an upslope ageostrophic transport. The convergence in the bottom transport induces adiabatic upwelling offshore of the shelf break. For a time period after the initial adjustment, scalings are identified for the upwelling speed and the length scale over which it occurs. Numerical experiments are used to test the scalings for a range of initial speeds and stratifications. Upwelling occurs within an inertial period, reaching values of up to 10 m day−1 within 2 to 7 km offshore of the shelf break. Upwelling drives an interior secondary circulation that accelerates the alongshelf flow over the slope, forming a shelfbreak jet. The model results are compared with upwelling estimates from other models and observations near the Middle Atlantic Bight shelf break.


2009 ◽  
Vol 39 (11) ◽  
pp. 2985-2998 ◽  
Author(s):  
Janet Sprintall ◽  
Sean Kennan ◽  
Yoo Yin Kim ◽  
Peter Niiler

Abstract Observations of horizontal velocity from two shipboard acoustic Doppler current profilers (ADCPs), as well as wind, temperature, and salinity observations from a cruise during June–July 2001, are used to compute a simplified mean meridional momentum balance of the North Equatorial Countercurrent (NECC) at 95°W. The terms that are retained in the momentum balance and derived using the measurements are the Coriolis and pressure gradient forces, and the vertical divergence of the turbulent stress. All terms were vertically integrated over the surface turbulent layer. The K-profile parameterization (KPP) prescribed Richardson number (Ri) is used to determine the depth of the turbulent boundary layer h at which the turbulent stress and its gradient vanish. At the time of the cruise, surface drifters and altimeter data show the flow structure of the NECC was complicated by the presence of tropical instability waves to the south and a strong Costa Rica Dome to the north. Nonetheless, a consistent, simplified momentum balance for the surface layer was achieved from the time mean of 19 days of repeat transects along 95°W with a 0.5° latitude resolution. The best agreement between the ageostrophic transport determined from the near-surface cruise measurements and the wind-derived Ekman transport was obtained for an Ri of 0.23 ± 0.05. The corresponding h ranges from ∼55 m at 4°N to ∼30 m within the NECC core (4.5°–6°N) and shoaling to just 15 m at 7°N. In general, the mean ageostrophic and Ekman transports decreased from south to north along the 95°W transect, although within the core of the NECC both transports were relatively strong and steady. This study underscores the importance of the southerly wind-driven eastward Ekman transport in the turbulent boundary layer before the NECC becomes fully developed later in the year through indirect forcing from the wind stress curl.


2006 ◽  
Vol 19 (10) ◽  
pp. 1948-1969 ◽  
Author(s):  
Matthew H. England ◽  
Caroline C. Ummenhofer ◽  
Agus Santoso

Abstract Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.


Sign in / Sign up

Export Citation Format

Share Document