scholarly journals Oceanic Density/Pressure Gradients and Slope Currents

2020 ◽  
Vol 50 (6) ◽  
pp. 1643-1654
Author(s):  
John M. Huthnance ◽  
Mark E. Inall ◽  
Neil J. Fraser

AbstractEastern boundary currents are some of the most energetic features of the global ocean, contributing significantly to meridional mass, heat, and salt transports. We take a new look at the form of an oceanic slope current in equilibrium with oceanic density gradients. We depth integrate the linearized x and y momentum and continuity equations and assume an equilibrium force balance in the along-slope direction (no along-slope variation in the along-slope flow) and zero cross-slope flow at a coastal boundary. We relate the bottom stress to a bottom velocity via a simple boundary friction law (the precise details are easily modified) and then derive an expression for the slope current velocity by integrating upward including thermal wind shear. This provides an expression for the slope current as a function of depth and of cross-slope coordinate, dependent on the oceanic density field and surface and bottom stresses. This new expression for the slope current allows for more general forms of oceanic density fields than have been treated previously. Wind stress is also now considered. The emphasis here is on understanding the simplified equilibrium force balance rather than the evolution toward that balance. There is a direct relationship between the slope current strength, friction, and along-slope forcing (e.g., wind), and also between the total along-slope forcing and bottom Ekman transport, illustrating that “slippery” bottom boundaries in literature are a direct consequence of unrealistically assuming zero along-slope pressure gradient. We demonstrate the utility of the new expression by comparison with a high-resolution hydrodynamic numerical model.

2020 ◽  
Author(s):  
John M. Huthnance ◽  
Mark Inall ◽  
Neil Fraser

<p>Eastern boundary currents are some of the most energetic features of the global ocean, contributing significantly to meridional mass, heat and salt transports. We take a new look at the form of an oceanic slope current in equilibrium with oceanic density gradients. We depth-integrate the linearised <em>x</em> and <em>y</em> momentum and continuity equations, assume an equilibrium force balance in the along-slope direction (no along-slope variation in the along-slope flow), and zero cross-slope flow at a coastal boundary. We relate the bottom stress to a bottom velocity via a simple boundary friction law (the precise details are easily modified), and then derive an expression for the slope current velocity by integrating upwards using thermal wind shear. This provides an expression for the slope current as a function of depth and of cross-slope coordinate, dependent on the oceanic density field and surface and bottom stresses.</p><p>This new expression for the slope current allows for more general forms of oceanic density fields than have been treated previously. Wind stress is also now considered. The emphasis here is on understanding the simplified equilibrium force balance rather than the evolution towards that balance. There is a direct relationship between the slope current strength, friction and along-slope forcing; also between the total along-slope forcing and bottom Ekman transport, illustrating that “slippery” bottom boundaries in literature are a direct consequence of unrealistically assuming zero along-slope pressure gradient. We demonstrate the utility of the new expression by comparison with a high resolution hydrodynamic numerical model.</p>


2020 ◽  
Author(s):  
David Webb

<p>An analysis of archived data from the NEMO 1/12th degree global ocean model shows the importance of the North Equatorial Counter Current (NECC) in the development of the strong 1982–1983 and 1997–1998 El Niños.  The model results indicate that in a normal year the coreof warm water in the NECC is diluted by the surface Ekman transport, by geostrophic inflow and by tropical instability waves. During the development of the 1982–1983 and 1997–1998 El Niños, these processes had reduced effect at the longitudes of warmest equatorial temperatures. During the autumns of 1982 and 1997, the speed of the NECC was also increased by a stronger-than-normal annual Rossby wave and other changes in sea level in the western Pacific.  The resulting increased transport of warm water by the NECC resulted in water with temperatures above 28C reaching the eastern Pacific.  This appears to have been a major factor in moving the centre of deep atmospheric convection eastwards across the Pacific.</p><p>Note:  This is based on the paper published in Ocean Science.  An oral presentation is possible.</p>


Author(s):  
Harry L. Bryden

Continuous observations of ocean circulation at 26°N in the subtropical Atlantic Ocean have been made since April 2004 to quantify the strength and variability in the Atlantic Meridional overturning circulation (AMOC), in which warm, upper waters flow northward and colder deep waters below 1100 m depth return southward. The principal components of the AMOC are northward western boundary current transport in the Gulf Stream and Antilles Current, northward surface Ekman transport and southward thermocline recirculation, all of which are generally considered to be part of the wind-driven circulation. Southward flowing deep waters below 1100 m depth are usually considered to represent the buoyancy-driven circulation. We argue that the Gulf Stream is partially wind-driven but also partially buoyancy-driven as it returns upper waters upwelled in the global ocean back to water mass formation regions in the northern Atlantic. Seasonal to interannual variations in the circulation at 26°N are principally wind-driven. Variability in the buoyancy-driven circulation occurred in a sharp reduction in 2009 in the southward flow of Lower North Atlantic Deep Water when its transport decreased by 30% from pre-2009 values. Over the 14-year observational period from 2004 to 2018, the AMOC declined by 2.4 Sv from 18.3 to 15.9 Sv.


2020 ◽  
Author(s):  
Michele Rebesco ◽  
Renata Giulia Lucchi ◽  
Andrea Caburlotto ◽  
Stefano Miserocchi ◽  
Leonardo Langone ◽  
...  

<p>The Ross Ice Shelf is the Antarctic region that over the last deglaciation experienced the greatest change in areal ice cover. Today, cold, dense and saline water masses (brines) produced in the Ross Sea polynya, flow from the shelf to the deep ocean providing a significant contribution to the propelling of the global ocean circulation regulating the climate. In particular, the Hillary Canyon in the Eastern Ross Sea is the main conduit through which brines descend the slope to reach the deeper ocean and is thus one of the greatest regions of cold, dense water export in the world.</p><p>A Contourite Depositional System (the ODYSSEA CDS) on the western flank of the Hillary Canyon is inferred to have been generated through several hundred-thousand years by along-slope, contour currents that transported and accumulated the sediments brought down the Hillary Canyon by means of brines. A multi-proxy investigation was conducted on the shallowest part of the ODYSSEA CDS depositional sequences, which we expect to contain i) the record of the brine formation, ii) the indication on contour current strength through time, and iii) their interplay and modulation associated to climate change.</p><p>Six gravity cores, collected in both the proximal and distal area of the ODYSSEA CDS, were studied through multi-proxy analyses including sediment physical properties (texture, structures, water content, wet bulk density), compositional characteristics (XRF, geochemistry and detrital apatite, zircon, and rutile U-Pb on ice-rafted debris) (Lucchi et al., 2019; Neofitu et al., 2020) and microfossil content (planktonic and benthic foraminifera, calcareous nannofossils and diatoms). An age model has been reconstructed combining palaeomagnetic record, biostratigraphic content, tephrochronology and AMS radiocarbon dating on planktonic foraminifera tests.</p><p>Inferred variations in dense water formation, contour current strength and <strong>ice sheet dynamics </strong>are discussed in the light of our data interpretation.</p><p> </p><p>Lucchi, R.G., Caburlotto, A., Miserocchi, S., Liu, Y., Morigi, C., Persico, D., Villa, G., Langone, L., Colizza, E., Macrì, P., Sagnotti, L., Conte, R., Rebesco, M., 2019. The depositional record of the Odyssea drift (Ross Sea, Antarctica). Geophysical Research Abstracts, Vol. 21, EGU2019-10409-1, 2019. EGU General Assembly, Vienna (Austria), 7–12, April, 2019 (POSTER).</p><p>Neofitu, R., Mark, C., Rebesco, M., Lucchi, R.G., Douss, N., Morigi, C., Kelley, S., Daly, J.S., 2020. Tracking Late Quaternary ice sheet dynamics by multi-proxy detrital mineral U-Pb analysis: A case study from the Odyssea contourite, Ross Sea, Antarctica. Geophysical Research Abstracts. EGU General Assembly, Vienna (Austria), 3–8, May, 2020 (POSTER for session CL1.11).</p>


2019 ◽  
Vol 49 (8) ◽  
pp. 2043-2074 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andreas Klocker ◽  
Dimitris Menemenlis

AbstractAll exchanges between the open ocean and the Antarctic continental shelf must cross the Antarctic Slope Current (ASC). Previous studies indicate that these exchanges are strongly influenced by mesoscale and tidal variability, yet the mechanisms responsible for setting the ASC’s transport and structure have received relatively little attention. In this study the roles of winds, eddies, and tides in accelerating the ASC are investigated using a global ocean–sea ice simulation with very high resolution (1/48° grid spacing). It is found that the circulation along the continental slope is accelerated both by surface stresses, ultimately sourced from the easterly winds, and by mesoscale eddy vorticity fluxes. At the continental shelf break, the ASC exhibits a narrow (~30–50 km), swift (>0.2 m s−1) jet, consistent with in situ observations. In this jet the surface stress is substantially reduced, and may even vanish or be directed eastward, because the ocean surface speed matches or exceeds that of the sea ice. The shelfbreak jet is shown to be accelerated by tidal momentum advection, consistent with the phenomenon of tidal rectification. Consequently, the shoreward Ekman transport vanishes and thus the mean overturning circulation that steepens the Antarctic Slope Front (ASF) is primarily due to tidal acceleration. These findings imply that the circulation and mean overturning of the ASC are not only determined by near-Antarctic winds, but also depend crucially on sea ice cover, regionally-dependent mesoscale eddy activity over the continental slope, and the amplitude of tidal flows across the continental shelf break.


Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 633-660 ◽  
Author(s):  
David John Webb

Abstract. An analysis of archived data from the NEMO 1∕12th degree global ocean model shows the importance of the North Equatorial Counter Current (NECC) in the development of the strong 1982–1983 and 1997–1998 El Niños. The model results indicate that in a normal year the core of warm water in the NECC is diluted by the surface Ekman transport, by geostrophic inflow and by tropical instability waves. During the development of the 1982–1983 and 1997–1998 El Niños, these processes had reduced effect at the longitudes of warmest equatorial temperatures and to the west. During the autumns of 1982 and 1997, the speed of the NECC was also increased by a stronger-than-normal annual Rossby wave. The increased transport of warm water by the NECC due to these changes resulted in warm water reaching the far eastern Pacific and appears to have been a major factor in moving the centre of deep atmospheric convection eastwards across the Pacific.


2008 ◽  
Vol 38 (1) ◽  
pp. 44-64 ◽  
Author(s):  
X. Capet ◽  
J. C. McWilliams ◽  
M. J. Molemaker ◽  
A. F. Shchepetkin

Abstract This is the second of three papers investigating the regime transition that occurs in numerical simulations for an idealized, equilibrium, subtropical, eastern boundary, upwelling current system similar to the California Current. The emergent upper-ocean submesoscale fronts are analyzed from phenomenological and dynamical perspectives, using a combination of composite averaging and separation of distinctive subregions of the flow. The initiating dynamical process for the transition is near-surface frontogenesis. The frontal behavior is similar to both observed meteorological surface fronts and solutions of the approximate dynamical model called surface dynamics (i.e., uniform interior potential vorticity q and diagnostic force balance) in the intensification of surface density gradients and secondary circulations in response to a mesoscale strain field. However, there are significant behavioral differences compared to the surface-dynamics model. Wind stress acts on fronts through nonlinear Ekman transport and creation and destruction of potential vorticity. The strain-induced frontogenesis is disrupted by vigorous submesoscale frontal instabilities that in turn lead to secondary frontogenesis events, submesoscale vortices, and excitation of even smaller-scale flows. Intermittent, submesoscale breakdown of geostrophic and gradient-wind force balance occurs during the intense frontogenesis and frontal-instability events.


2020 ◽  
Author(s):  
Tomas Jonathan ◽  
Helen Johnson ◽  
David Marshall ◽  
Mike Bell ◽  
Patrick Hyder

<p>The Southern Ocean is a crucial part of the global ocean circulation. The unique bathymetry and lack of meridional boundary in conjunction with an equator to pole temperature gradient and strong westerly winds results in an eastward flowing Antarctic Circumpolar Current (ACC). The ACC is the strongest ocean current in the world (173.3 ± 10.7Sv), vital in transporting heat, carbon and nutrients between the major ocean basins. </p><p>Using prototype UK CMIP6 (HadGEM3-GC3.1) simulations at 1°, 1/4° and 1/12° spatial resolutions we illustrate the strong resolution dependence of the strength of the ACC through the Drake Passage. All three model resolutions exhibit a weak ACC compared to observations. The 1/4° and 1/12° models show a significant weakening over the first 50 years, stabilizing at 60Sv and 120Sv respectively.</p><p>We analyse the source of the weaker volume transport by decomposing the ACC transport into components arising due to northern and southern boundary density profiles (relative to the bottom density), Ekman transport and depth-independent flow. We attribute the weaker ACC in the 1/4° model to a lightening of the southern density profile and the formation of a reverse flow along the coast of Antarctica.</p><p>Our decomposition highlights the significant contribution to the ACC’s volume transport and variability made by both northern and southern density profiles, as well as the depth-independent component of the flow.</p>


2018 ◽  
Author(s):  
Lala Kounta ◽  
Xavier Capet ◽  
Julien Jouanno ◽  
Nicolas Kolodziejczyk ◽  
Bamol Sow ◽  
...  

Abstract. The West African seaboard is one of the upwelling sectors that has received the least attention and in situ observations relevant to its dynamics are particularly scarce. The current system in this sector is not well known and understood, e.g., in terms of seasonal variability, across-shore structure, forcing processes. This knowledge gap is addressed in a suite of two studies that analyze the mean seasonal cycle of an eddy-permitting numerical simulation of the tropical Atlantic. Part 1 is concerned with the circulation over the West African continental slope at the outmost reach of the Canary current system, between ∼ 10 and 20° N. The focus is on the depth range most directly implicated in the wind-driven circulation (offshore/coastal upwellings and Sverdrup transport), located above the potential density σt = 26.7 kg m−3 in the model (approx. above 250 m depth). In this sector and for this depth range, the flow is predominantly poleward as a direct consequence of positive wind stress curl forcing, but the degree to which the magnitude of the upper ocean poleward transport reflects Sverdrup theory varies with latitude. The model poleward flow also exhibits a marked semi-annual cycle with transport maxima in spring and fall. Dynamical rationalizations of these characteristics are offered in terms of wind forcing of coastal trapped waves and Rossby wave dynamics. Remote forcing by seasonal fluctuations of coastal winds in the Guinea Gulf play an instrumental role in the fall intensification of the poleward flow. The spring intensification appears to be related to wind fluctuations taking place at shorter distances, north of the Guinea Gulf entrance and also locally. Rossby wave activity accompanying the semi-annual fluctuations of the poleward flow in the coastal wave guide varies greatly with latitude, which in turn, exerts a major influence on the vertical structure of the poleward flow. Although the realism of the model West African boundary currents is difficult to determine precisely, the present in-depth investigation provides a renewed framework for future observational programs in the region.


2012 ◽  
Vol 42 (9) ◽  
pp. 1461-1474 ◽  
Author(s):  
A. K. Wåhlin ◽  
R. D. Muench ◽  
L. Arneborg ◽  
G. Björk ◽  
H. K. Ha ◽  
...  

Abstract The exchange of warm, salty seawater across the continental shelves off West Antarctica leads to subsurface glacial melting at the interface between the ocean and the West Antarctic Ice Sheet. One mechanism that contributes to the cross-shelf transport is Ekman transport induced by along-slope currents over the slope and shelf break. An investigation of this process is applied to the Amundsen Sea shelfbreak region, using recently acquired and historical field data to guide the analyses. Along-slope currents were observed at transects across the eastern and western reaches of the Amundsen slope. Currents in the east flowed eastward, and currents farther west flowed westward. Under the eastward-flowing currents, hydrographic isolines sloped upward paralleling the seabed. In this layer, declining buoyancy forces rather than friction were bringing the velocity to zero at the seabed. The basin water in the eastern part of the shelf was dominated by water originating from 800–1000-m depth off shelf, suggesting that transport of such water across the shelf frequently occurs. The authors show that arrested Ekman layers mechanism can supply deep water to the shelf break in the eastern section, where it has access to the shelf. Because no unmodified off-shelf water was found on the shelf in the western part, bottom layer Ekman transport does not appear a likely mechanism for delivery of warm deep water to the western shelf area. Warming of the warm bottom water was most pronounced on the western shelf, where the deep-water temperature increased by 0.6°C during the past decade.


Sign in / Sign up

Export Citation Format

Share Document