scholarly journals The hydrodynamics of a bleaching event: Implications for management and monitoring

Author(s):  
William Skirving ◽  
Mal Heron ◽  
Scott Heron
Keyword(s):  
Coral Reefs ◽  
2021 ◽  
Author(s):  
Eleanor J. Vaughan ◽  
Shaun K. Wilson ◽  
Samantha J. Howlett ◽  
Valeriano Parravicini ◽  
Gareth J. Williams ◽  
...  

AbstractScleractinian corals are engineers on coral reefs that provide both structural complexity as habitat and sustenance for other reef-associated organisms via the release of organic and inorganic matter. However, coral reefs are facing multiple pressures from climate change and other stressors, which can result in mass coral bleaching and mortality events. Mass mortality of corals results in enhanced release of organic matter, which can cause significant alterations to reef biochemical and recycling processes. There is little known about how long these nutrients are retained within the system, for instance, within the tissues of other benthic organisms. We investigated changes in nitrogen isotopic signatures (δ15N) of macroalgal tissues (a) ~ 1 year after a bleaching event in the Seychelles and (b) ~ 3 months after the peak of a bleaching event in Mo’orea, French Polynesia. In the Seychelles, there was a strong association between absolute loss in both total coral cover and branching coral cover and absolute increase in macroalgal δ15N between 2014 and 2017 (adjusted r2 = 0.79, p = 0.004 and adjusted r2 = 0.86, p = 0.002, respectively). In Mo’orea, a short-term transplant experiment found a significant increase in δ15N in Sargassum mangarevense after specimens were deployed on a reef with high coral mortality for ~ 3 weeks (p < 0.05). We suggest that coral-derived nutrients can be retained within reef nutrient cycles, and that this can affect other reef-associated organisms over both short- and long-term periods, especially opportunistic species such as macroalgae. These species could therefore proliferate on reefs that have experienced mass mortality events, because they have been provided with both space and nutrient subsidies by the death and decay of corals.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
L. Saponari ◽  
I. Dehnert ◽  
P. Galli ◽  
S. Montano

AbstractCorallivory causes considerable damage to coral reefs and can exacerbate other disturbances. Among coral predators, Drupella spp. are considered as delayer of coral recovery in the Republic of Maldives, although little information is available on their ecology. Thus, we aimed to assess their population structure, feeding behaviour and spatial distribution around 2 years after a coral bleaching event in 2016. Biological and environmental data were collected using belt and line intercept transects in six shallow reefs in Maldives. The snails occurred in aggregations with a maximum of 62 individuals and exhibited a preference for branching corals. Yet, the gastropods showed a high plasticity in adapting feeding preferences to prey availability. Drupella spp. were homogenously distributed in the study area with an average of 9.04 ± 19.72 ind/200 m2. However, their occurrence was significantly different at the reef scale with the highest densities found in locations with higher coral cover. The impact of Drupella spp. appeared to be minimal with the population suffering from the loss of coral cover. We suggest that monitoring programs collect temporal- and spatial-scale data on non-outbreaking populations or non-aggregating populations to understand the dynamics of predation related to the co-occurrence of anthropogenic and natural impacts.


Coral Reefs ◽  
2016 ◽  
Vol 36 (1) ◽  
pp. 167-167 ◽  
Author(s):  
Gabriel Grimsditch ◽  
Ahmed Basheer ◽  
D. E. P. Bryant

F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1728 ◽  
Author(s):  
Andrew H Baird ◽  
Sally A. Keith ◽  
Erika Woolsey ◽  
Ryuta Yoshida ◽  
Tohru Naruse

Coral bleaching can be induced by many different stressors, however, the most common cause of mass bleaching in the field is higher than average sea surface temperatures (SST). Here, we describe an unusual bleaching event that followed very calm sea conditions combined with higher than average SST. Patterns of mortality differed from typical bleaching in four ways: 1) mortality was very rapid; 2) a different suite of species were most affected; 3) tissue mortality in Acropora spp. was often restricted to the center of the colony; 4) the event occurred early in summer. The two weeks prior to the event included 8 days where the average wind speed was less than 3 ms-1. In addition, SSTs in the weeks preceding and during the event were 1.0-1.5°C higher than the mean for the last 30 years. We hypothesize that this unusual bleaching event was caused by anoxia resulting from a lack of water movement induced by low wind speeds combined with high SST.


1995 ◽  
Vol 46 (8) ◽  
pp. 1153 ◽  
Author(s):  
JH Drollet ◽  
M Faucon ◽  
PMV Martin

After a minor coral bleaching event in 1993, a more dramatic episode occurred in Tahiti from March to July 1994. Coral bleaching was recorded along four continuous 25-m-long line transects. Physico-chemical parameters of the sea water (temperature, salinity, dissolved oxygen and pH) were noted once a week, and solar UV-B flux was recorded daily before and during the bleaching episode. Results emphasized the importance of the taxonomic position of coral in susceptibility to bleaching. The evolution of bleaching through time was related to mean daily solar UV-B flux and sea-water temperature. Moreover, comparison of the 1993 and 1994 data suggested temperature and/or UV-B thresholds that may elicit minor or severe bleaching events.


2018 ◽  
Vol 24 ◽  
pp. 288-295
Author(s):  
Giannina Nicole R. Feliciano ◽  
Leah Marie F. Gagalac ◽  
Aurelia Maria Cecilia G. Nava ◽  
Wilfredo Y. Licuanan

Sign in / Sign up

Export Citation Format

Share Document