scholarly journals Rapid coral mortality following unusually calm and hot conditions on Iriomote, Japan

F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1728 ◽  
Author(s):  
Andrew H Baird ◽  
Sally A. Keith ◽  
Erika Woolsey ◽  
Ryuta Yoshida ◽  
Tohru Naruse

Coral bleaching can be induced by many different stressors, however, the most common cause of mass bleaching in the field is higher than average sea surface temperatures (SST). Here, we describe an unusual bleaching event that followed very calm sea conditions combined with higher than average SST. Patterns of mortality differed from typical bleaching in four ways: 1) mortality was very rapid; 2) a different suite of species were most affected; 3) tissue mortality in Acropora spp. was often restricted to the center of the colony; 4) the event occurred early in summer. The two weeks prior to the event included 8 days where the average wind speed was less than 3 ms-1. In addition, SSTs in the weeks preceding and during the event were 1.0-1.5°C higher than the mean for the last 30 years. We hypothesize that this unusual bleaching event was caused by anoxia resulting from a lack of water movement induced by low wind speeds combined with high SST.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1728 ◽  
Author(s):  
Andrew H Baird ◽  
Sally A. Keith ◽  
Erika Woolsey ◽  
Ryuta Yoshida ◽  
Tohru Naruse

Coral bleaching can be induced by many different stressors, however, the most common cause of mass bleaching in the field is high sea temperatures (SST). Here, we describe an unusual bleaching event that followed very calm sea conditions combined with higher than average sea surface temperatures (SST). Patterns of mortality differed from typical thermal bleaching in four ways: 1) mortality was very rapid; 2) the suite of species most affected was different; 3) tissue mortality in Acropora spp. was often restricted to the center of the colony; 4) the event occurred early in the summer. The two weeks prior to the event included 8 days where the average wind speed was less than 3 ms-1. In addition, SSTs in the weeks preceding this event were 1.0-1.5°C higher than the mean for the last 30 years. We hypothesize that the lack of water movement induced by low wind speeds combined with high SST to cause colonies anoxic stress resulting in this unusual bleaching event.


2010 ◽  
Vol 7 (4) ◽  
pp. 5719-5755 ◽  
Author(s):  
O. Wurl ◽  
E. Wurl ◽  
L. Miller ◽  
K. Johnson ◽  
S. Vagle

Abstract. Results from a study of surfactants in the sea-surface microlayer (SML) in different regions of the ocean (subtropical, temperate, polar) suggest that this interfacial layer between the ocean and atmosphere covers the ocean's surface to a significant extent. Threshold values at which primary production acts as a significant source of natural surfactants have been derived from the enrichment of surfactants in the SML relative to underlying water and local primary production. Similarly, we have also derived a wind speed threshold at which the SML is disrupted. The results suggest that surfactant enrichment in the SML is typically greater in oligotrophic regions of the ocean than in more productive waters. Furthermore, the enrichment of surfactants persisted at wind speeds of up to 10 m s−1 without any observed depletion above 5 m s−1. This suggests that the SML is stable enough to exist even at the global average wind speed of 6.6 m s−1. Global maps of primary production and wind speed are used to estimate the ocean's SML coverage. The maps indicate that wide regions of the Pacific and Atlantic Oceans between 30° N and 30° S are more significantly affected by the SML than northern of 30° N and southern of 30° S due to higher productivity (spring/summer blooms) and wind speeds exceeding 12 m s−1 respectively.


2013 ◽  
Vol 10 (3) ◽  
pp. 260 ◽  
Author(s):  
Evan Couzo ◽  
Harvey E. Jeffries ◽  
William Vizuete

Environmental context Ozone pollution in Houston, Texas, has been a public health concern for decades. Unusually large hourly changes in observed ozone concentrations have been correlated with a greater likelihood of violating the federal air quality standard. We investigate the geographic and chemical origins of these large hourly increases, which should help regulators better control ozone violations. Abstract Many of Houston’s highest 8-h ozone (O3) peaks are characterised by increases in concentrations of at least 40ppb in 1h, or 60ppb in 2h. These rapid increases are called non-typical O3 changes (NTOCs). In 2004, the Texas Commission on Environmental Quality (TCEQ) developed a novel emissions control strategy aimed at eliminating NTOCs. The strategy limited routine and short-term emissions of ethene, propene, 1,3-butadiene and butene isomers, collectively called highly reactive volatile organic compounds (HRVOCs), which are released from petrochemical facilities. HRVOCs have been associated with NTOCs through field campaigns and modelling studies. This study analysed wind measurements and O3, formaldehyde (HCHO) and sulfur dioxide (SO2) concentrations from 2000 to 2011 at 25 ground monitors in Houston. NTOCs almost always occurred when monitors were downwind of petrochemical facilities. Rapid O3 increases were associated with low wind speeds; 75% of NTOCs occurred when the 3-h average wind speed preceding the event was less than 6.5kmh–1. Statistically significant differences in HCHO concentrations were seen between days with and without NTOCs. Early afternoon HCHO concentrations were greater on NTOC days. In the morning before an observed NTOC event, however, there were no significant differences in HCHO concentrations between days with and without NTOCs. Hourly SO2 concentrations also increased rapidly, exhibiting behaviour similar to NTOCs. Oftentimes, the SO2 increases preceded a NTOC. These findings show that, despite the apparent success of targeted HRVOC emission controls, further restrictions may be needed to eliminate the remaining O3 events.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2796
Author(s):  
Andrzej Osuch ◽  
Ewa Osuch ◽  
Stanisław Podsiadłowski ◽  
Piotr Rybacki

In the introduction to this paper, the characteristics of Góreckie lake and the construction and operation of the wind-driven pulverizing aerator are presented. The purpose of this manuscript is to determine the efficiency of the pulverizing aerator unit in the windy conditions of Góreckie Lake. The efficiency of the pulverization aerator depends on the wind conditions at the lake. It was necessary to conduct thorough research to determine the efficiency of water flow through the pulverization segment (water pump). It was necessary to determine the rotational speed of the paddle wheel, which depended on the average wind speed. Throughout the research period, measurements of hourly average wind speed were carried out. It was possible to determine the efficiency of the machine by developing a dedicated mathematical model. The latest method was used in the research, consisting of determining the theoretical volumetric flow rates of water in the pulverizing aerator unit, based on average hourly wind speeds. Pulverization efficiency under the conditions of Góreckie Lake was determined based on 6600 average wind speeds for spring, summer and autumn, 2018. Based on the model, the theoretical efficiency of the machine was calculated, which, under the conditions of Góreckie Lake, amounted to 75,000 m3 per year.


2019 ◽  
Vol 4 (2) ◽  
pp. 343-353 ◽  
Author(s):  
Tyler C. McCandless ◽  
Sue Ellen Haupt

Abstract. Wind power is a variable generation resource and therefore requires accurate forecasts to enable integration into the electric grid. Generally, the wind speed is forecast for a wind plant and the forecasted wind speed is converted to power to provide an estimate of the expected generating capacity of the plant. The average wind speed forecast for the plant is a function of the underlying meteorological phenomena being predicted; however, the wind speed for each turbine at the farm is also a function of the local terrain and the array orientation. Conversion algorithms that assume an average wind speed for the plant, i.e., the super-turbine power conversion, assume that the effects of the local terrain and array orientation are insignificant in producing variability in the wind speeds across the turbines at the farm. Here, we quantify the differences in converting wind speed to power at the turbine level compared with a super-turbine power conversion for a hypothetical wind farm of 100 2 MW turbines as well as from empirical data. The simulations with simulated turbines show a maximum difference of approximately 3 % at 11 m s−1 with a 1 m s−1 standard deviation of wind speeds and 8 % at 11 m s−1 with a 2 m s−1 standard deviation of wind speeds as a consequence of Jensen's inequality. The empirical analysis shows similar results with mean differences between converted wind speed to power and measured power of approximately 68 kW per 2 MW turbine. However, using a random forest machine learning method to convert to power reduces the error in the wind speed to power conversion when given the predictors that quantify the differences due to Jensen's inequality. These significant differences can lead to wind power forecasters overestimating the wind generation when utilizing a super-turbine power conversion for high wind speeds, and indicate that power conversion is more accurately done at the turbine level if no other compensatory mechanism is used to account for Jensen's inequality.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 312
Author(s):  
Thishan Karandana Gamalathge ◽  
Mark Green ◽  
William Stockwell

The mass composition of Particulate Matter (PM) with an aerodynamic diameter of 2.5 microns (PM2.5) in San Joaquin Valley (SJV) is dominated by ammonium nitrate (NH4NO3), a secondary pollutant. The goal of this research was the investigation of the relationship between emissions, meteorology and PM2.5 concentrations in Fresno for the winter season. It was found that location of sites near emission sources such as freeways compared with residential sites strongly affected measured PM2.5 concentrations. It was found that although long-term trends showed declines in both emissions and PM2.5 concentrations, there was substantial variability between the years in the PM2.5–emissions relationship. Much of the yearly variation in the relationship between emissions and PM2.5 concentrations can be attributed to yearly variations in weather, such as atmospheric stability, precipitation frequency and average wind speed. There are moderate correlations between PM2.5 concentrations and temperature differences between nearby surface stations at varying elevations which explains some of the daily and seasonal variation in PM2.5. Occurrence of precipitation was related to low PM 2.5, although the higher wind speeds and lower atmospheric stability associated with precipitation likely explain some of the low PM2.5 as well as washout of PM.


2018 ◽  
Vol 11 (3) ◽  
pp. 1377-1384 ◽  
Author(s):  
Viswanathan Bringi ◽  
Merhala Thurai ◽  
Darrel Baumgardner

Abstract. We report on fall speed measurements of raindrops in light-to-heavy rain events from two climatically different regimes (Greeley, Colorado, and Huntsville, Alabama) using the high-resolution (50 µm) Meteorological Particle Spectrometer (MPS) and a third-generation (170 µm resolution) 2-D video disdrometer (2DVD). To mitigate wind effects, especially for the small drops, both instruments were installed within a 2∕3-scale Double Fence Intercomparison Reference (DFIR) enclosure. Two cases involved light-to-moderate wind speeds/gusts while the third case was a tornadic supercell and several squall lines that passed over the site with high wind speeds/gusts. As a proxy for turbulent intensity, maximum wind speeds from 10 m height at the instrumented site recorded every 3 s were differenced with the 5 min average wind speeds and then squared. The fall speeds vs. size from 0.1 to 2 and >0.7 mm were derived from the MPS and the 2DVD, respectively. Consistency of fall speeds from the two instruments in the overlap region (0.7–2 mm) gave confidence in the data quality and processing methodologies. Our results indicate that under low turbulence, the mean fall speeds agree well with fits to the terminal velocity measured in the laboratory by Gunn and Kinzer from 100 µm up to precipitation sizes. The histograms of fall speeds for 0.5, 0.7, 1 and 1.5 mm sizes were examined in detail under the same conditions. The histogram shapes for the 1 and 1.5 mm sizes were symmetric and in good agreement between the two instruments with no evidence of skewness or of sub- or super-terminal fall speeds. The histograms of the smaller 0.5 and 0.7 mm drops from MPS, while generally symmetric, showed that occasional occurrences of sub- and super-terminal fall speeds could not be ruled out. In the supercell case, the very strong gusts and inferred high turbulence intensity caused a significant broadening of the fall speed distributions with negative skewness (for drops of 1.3, 2 and 3 mm). The mean fall speeds were also found to decrease nearly linearly with increasing turbulent intensity attaining values about 25–30 % less than the terminal velocity of Gunn–Kinzer, i.e., sub-terminal fall speeds.


Author(s):  
Mohd Moonis Zaheer ◽  
Nazrul Islam

Articulated tower motions have been characterized by rigid body mode of vibrations falling in the wind excitation frequency range due to its compliant nature. Dynamic response analysis of a multi hinged articulated tower platform to random wind and wave forces are presented in this paper. The wave forces on the submerged elements of the tower are calculated by using Morison’s Equation. The fluctuating wind is modeled with Ochi and Shin wind gust spectrum. The effect of wave age (young, intermediate and fully developed waves) on the wind gust spectrum is incorporated by adopting the wave age dependent Volkov, and wave age independent Charnock sea surface roughness models. The response of the tower is determined by a time domain iterative method. An example of results demonstrates the clear effect of wave age on the nonlinear dynamic response on the system. The mean wind modifies the mean position of the surge response to the positive side, causing an offset. Moreover, for high mean wind speeds the total wind response is much smaller than the wave response, but for low wind speeds the wind appears to be more important.


Sign in / Sign up

Export Citation Format

Share Document