Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings

1995 ◽  
Vol 100 (B8) ◽  
pp. 15565-15579 ◽  
Author(s):  
Alan Bruce Thompson ◽  
James A. D. Connolly
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia-Katerina Kufner ◽  
Najibullah Kakar ◽  
Maximiliano Bezada ◽  
Wasja Bloch ◽  
Sabrina Metzger ◽  
...  

AbstractBreak-off of part of the down-going plate during continental collision occurs due to tensile stresses built-up between the deep and shallow slab, for which buoyancy is increased because of continental-crust subduction. Break-off governs the subsequent orogenic evolution but real-time observations are rare as it happens over geologically short times. Here we present a finite-frequency tomography, based on jointly inverted local and remote earthquakes, for the Hindu Kush in Afghanistan, where slab break-off is ongoing. We interpret our results as crustal subduction on top of a northwards-subducting Indian lithospheric slab, whose penetration depth increases along-strike while thinning and steepening. This implies that break-off is propagating laterally and that the highest lithospheric stretching rates occur during the final pinching-off. In the Hindu Kush crust, earthquakes and geodetic data show a transition from focused to distributed deformation, which we relate to a variable degree of crust-mantle coupling presumably associated with break-off at depth.


Geology ◽  
2016 ◽  
Vol 44 (10) ◽  
pp. 819-822 ◽  
Author(s):  
Hélène Delavault ◽  
Bruno Dhuime ◽  
Chris J. Hawkesworth ◽  
Peter A. Cawood ◽  
Horst Marschall ◽  
...  

2018 ◽  
Author(s):  
Carly Faber ◽  
Holger Stünitz ◽  
Deta Gasser ◽  
Petr Jeřábek ◽  
Katrin Kraus ◽  
...  

Abstract. This study investigates the Caledonian metamorphic and tectonic evolution in northern Norway, examining the structure and tectonostratigraphy of the Reisa Nappe Complex (RNC; from bottom to top, Vaddas, Kåfjord and Nordmannvik nappes). Structural data, phase equilibrium modelling, and U-Pb zircon and titanite geochronology are used to constrain the timing and P-T conditions of deformation and metamorphism that formed the nappes and facilitated crustal thickening during continental collision. Five samples taken from different parts of the RNC reveal an anticlockwise P-T path attributed to the effects of early Silurian heating followed by thrusting. An early Caledonian S1 foliation in the Nordmannvik Nappe records kyanite-grade partial melting at ~ 760–790 °C and ~ 9.4–11 kbar. Leucosomes formed at 439 ± 2 Ma (U-Pb zircon) in fold axial planes in the Nordmannvik Nappe indicate that compressional deformation initiated while the rocks were still partially molten. This stage was followed by pervasive solid-state shearing as the rocks cooled and solidified, forming the S2 foliation at 680–730 °C and 9.5–10.9 kbar. Multistage titanite growth in the Nordmannvik Nappe records this extended metamorphism between 444 and 427 Ma. In the underlying Kåfjord Nappe, garnet cores record lower P-T (590–610 °C and 5.5–6.8 kbar) but a similar geothermal gradient as the S1 migmatitic event in the Nordmannvik Nappe, indicating formation at a higher relative position in the crust. S2 shearing in the Kåfjord Nappe occurred at 580–605 °C and 9.2–10.1 kbar, indicating a considerable pressure increase during nappe stacking. Gabbro intruded in the Vaddas Nappe at 439 ± 1 Ma, synchronously with migmatization in the Nordmannvik Nappe. In the Vaddas Nappe S2 shearing occurred at 630–640 ºC and 11.7–13 kbar. Titanite growth along the lower RNC boundary records S2-shearing at 432 ± 6 Ma. It emerges that early Silurian heating (~ 440 Ma), probably resulting from large-scale magma underplating, initiated partial melting that weakened the lower crust, which facilitated dismembering of the crust into individual nappe units. This tectonic style contrasts subduction of mechanically strong continental crust to great depths.


Author(s):  
Yu-Wei Tang ◽  
Long Chen ◽  
Zi-Fu Zhao ◽  
Yong-Fei Zheng

Granitoids at convergent plate boundaries can be produced either by partial melting of crustal rocks (either continental or oceanic) or by fractional crystallization of mantle-derived mafic magmas. Whereas granitoid formation through partial melting of the continental crust results in reworking of the pre-existing continental crust, granitoid formation through either partial melting of the oceanic crust or fractional crystallization of the mafic magmas leads to growth of the continental crust. This category is primarily based on the radiogenic Nd isotope compositions of crustal rocks; positive εNd(t) values indicate juvenile crust whereas negative εNd(t) values indicate ancient crust. Positive εNd(t) values are common for syn-collisional granitoids in southern Tibet, which leads to the hypothesis that continental collision zones are important sites for the net growth of continental crust. This hypothesis is examined through an integrated study of in situ zircon U-Pb ages and Hf isotopes, whole-rock major trace elements, and Sr-Nd-Hf isotopes as well as mineral O isotopes for felsic igneous rocks of Eocene ages from the Gangdese orogen in southern Tibet. The results show that these rocks can be divided into two groups according to their emplacement ages and geochemical features. The first group is less granitic with lower SiO2 contents of 59.82−64.41 wt%, and it was emplaced at 50−48 Ma in the early Eocene. The second group is more granitic with higher SiO2 contents of 63.93−68.81 wt%, and it was emplaced at 42 Ma in the late Eocene. The early Eocene granitoids exhibit relatively depleted whole-rock Sr-Nd-Hf isotope compositions with low (87Sr/86Sr)i ratios of 0.7044−0.7048, positive εNd(t) values of 0.6−3.9, εHf(t) values of 6.5−10.5, zircon εHf(t) values of 1.6−12.1, and zircon δ18O values of 5.28−6.26‰. These isotopic characteristics are quite similar to those of Late Cretaceous mafic arc igneous rocks in the Gangdese orogen, which indicates their derivation from partial melting of the juvenile mafic arc crust. In comparison, the late Eocene granitoids have relatively lower MgO, Fe2O3, Al2O3, and heavy rare earth element (HREE) contents but higher K2O, Rb, Sr, Th, U, Pb contents, Sr/Y, and (La/Yb)N ratios. They also exhibit more enriched whole-rock Sr-Nd-Hf isotope compositions with high (87Sr/86Sr)i ratios of 0.7070−0.7085, negative εNd(t) values of −5.2 to −3.9 and neutral εHf(t) values of 0.9−2.3, and relatively lower zircon εHf(t) values of −2.8−8.0 and slightly higher zircon δ18O values of 6.25−6.68‰. An integrated interpretation of these geochemical features is that both the juvenile arc crust and the ancient continental crust partially melted to produce the late Eocene granitoids. In this regard, the compositional evolution of syn-collisional granitoids from the early to late Eocene indicates a temporal change of their magma sources from the complete juvenile arc crust to a mixture of the juvenile and ancient crust. In either case, the syn-collisional granitoids in the Gangdese orogen are the reworking products of the pre-existing continental crust. Therefore, they do not contribute to crustal growth in the continental collision zone.


Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 117-148 ◽  
Author(s):  
Carly Faber ◽  
Holger Stünitz ◽  
Deta Gasser ◽  
Petr Jeřábek ◽  
Katrin Kraus ◽  
...  

Abstract. This study investigates the tectonostratigraphy and metamorphic and tectonic evolution of the Caledonian Reisa Nappe Complex (RNC; from bottom to top: Vaddas, Kåfjord, and Nordmannvik nappes) in northern Troms, Norway. Structural data, phase equilibrium modelling, and U-Pb zircon and titanite geochronology are used to constrain the timing and pressure–temperature (P–T) conditions of deformation and metamorphism during nappe stacking that facilitated crustal thickening during continental collision. Five samples taken from different parts of the RNC reveal an anticlockwise P–T path attributed to the effects of early Silurian heating (D1) followed by thrusting (D2). At ca. 439 Ma during D1 the Nordmannvik Nappe reached the highest metamorphic conditions at ca. 780 ∘C and ∼9–11 kbar inducing kyanite-grade partial melting. At the same time the Kåfjord Nappe was at higher, colder, levels of the crust ca. 600 ∘C, 6–7 kbar and the Vaddas Nappe was intruded by gabbro at > 650 ∘C and ca. 6–9 kbar. The subsequent D2 shearing occurred at increasing pressure and decreasing temperatures ca. 700 ∘C and 9–11 kbar in the partially molten Nordmannvik Nappe, ca. 600 ∘C and 9–10 kbar in the Kåfjord Nappe, and ca. 640 ∘C and 12–13 kbar in the Vaddas Nappe. Multistage titanite growth in the Nordmannvik Nappe records this evolution through D1 and D2 between ca. 440 and 427 Ma, while titanite growth along the lower RNC boundary records D2 shearing at 432±6 Ma. It emerges that early Silurian heating (ca. 440 Ma) probably resulted from large-scale magma underplating and initiated partial melting that weakened the lower crust, which facilitated dismembering of the crust into individual thrust slices (nappe units). This tectonic style contrasts with subduction of mechanically strong continental crust to great depths as seen in, for example, the Western Gneiss Region further south.


It is suggested that the Helikian (1650-1000 million years (Ma) ago) evolution of the Grenville Province in the Canadian Shield was marked by three events: emplacement of anorthosites around 1450-1500 Ma ago, rifting associated with opening of a proto-Atlantic ocean between 1200 and 1300 Ma ago, and continental collision responsible for the Grenvillian ‘orogeny’ about 1100-1000 Ma ago. Emplacement of rocks of the anorthosite suite (anorthosites and adamellites or mangerites) into continental crust was accompanied by formation of aureoles in the granulite facies. The Grenville Group was deposited in the southern part of the Province between 1300 and 1200 Ma ago and comprises marbles, clastic metasedimentary rocks and volcanics. It occupies a roughly triangular area limited on the northwest by the Bancroft—Renfrew lineament and on the southeast by the Chibougamau—Gatineau lineament. It is thought to have been accumulated in an aulacogen that would have developed along a fracture zone separating two basement blocks. The Grenvillian thermotectonic event may represent a Tibetan continental collision in the sense of Burke & Dewey. The suture zone would now be hidden under the Appalachians. Collision would cause reactivation of continental crust and renewed movement on pre-existing lineaments. The east—central part of the Grenville Province appears to have been more intensively reactivated than the western part.


2015 ◽  
Vol 19 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Mehran Arian

<p class="MsoNormal"><span style="font-size: 10.0pt; font-family: Times; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Times New Roman';">Seismotectonic-geologic hazards zoning map of Iran is drawn based on deterministic seismic hazards evaluation using the seismicity records, structural trends, tectonic settings, fault ruptures and neotectonics activities in Iran. This map has been prepared to indicate the seismotectonic-geologic hazards of Iran. It contains the earthquake hazards parameters such as b value and M<sub>max</sub> for the nineteen seismotectonic provinces. Furthermore, Moho discontinuity depth, seismogenic layer depths and seismic rates for all provinces are investigated. The majority of deformation in Iran has been concentrated in the continental crust of the country. Zagros and Alborz experience deep earthquakes that are an indication of existence of the thick-skinned tectonics. Finally, some provinces such as Piranshahr- Borojen, East Iran, Naien- Rafsanjan and East Alborz, which include main suture zones of Iran, have faced high seismic hazards.</span></p><p class="MsoNormal"><span style="font-size: 10.0pt; font-family: Times; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Times New Roman';"><br /></span></p><p class="MsoNormal"><span style="font-size: 10.0pt; font-family: Times; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Times New Roman';"><strong>Resumen</strong></span></p><p class="MsoNormal"><span style="font-size: 10.0pt; font-family: Times; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'Times New Roman';">Este estudio se realizó con el fin de preparar un mapa zonal de amenazas seismotectónicas y geológicas de Irán con base en la evaluación de amenazas sismícas deterministas a través de los registros sísmicos, las tendencias estructurales, las configuraciones tectónicas, las rupturas de fallas y la actividad neotectónica en Irán. Este mapa contiene los parámetros de amenaza sismológica como los valores b y M<sub>max</sub> para las 19 provincias sismotectónicas del país. Además, se investigó la profundidad de la Discontinuidad de Mohorovičić, las capas sismogénicas profundas y las clasificaciomes sísmicas para todas las provincias. La mayoría de la deformación de Irán está concentrada en la corteza continental del país. Las provincias de Zagros y Alborz experimentan terremotos profundos que indican la existencia de una configuración tectónica de capa gruesa. Finalmente, algunas provincias como Piranshahr-Borojen, Este de Irán, Naien-Rafsanjan y Este de Alborz, que incluyen las principales zonas de sutura de Irán, han enfrentado grandes riesgos sísmicos.</span></p>


Geochemistry ◽  
2021 ◽  
Author(s):  
Gaafar A. El Bahariya

Granites constitute the main rock components of the Earth’s continental crust, which suggested to be formed in variable geodynamics environments. The different types of granitic rocks, their compositional characteristics, tectonic settings and magma sources are outlined. Mineralogical classification of granites includes four rock types: tonalites, granodiorites, granite (monzogranite and syenogranites) and alkali-feldspar granites. Alphabetical classification subdivided granites into: I-type, S-type, A-type and M-type granites. Moreover, formation of granitic magmas requires distinctive geodynamic settings such as: volcanic arc granite (Cordilleran); collision-related granites (leucogranites); intra-plate and ocean ridge granites. The Eastern Desert of Egypt (ED) forms the northern part of Nubian Shield. Both older and younger granites are widely exposed in the ED. Old granites (OG) comprise tonalites and granodiorites of syn- to late-orogenic granitoid assemblages. They are calcalkaline, I-type, metaluminous and display island arc tectonic setting. Younger granites (YG) on the other hand, include granites, alkali-feldspar granites and minor granodiorites. They are of I- and A-type granites and of post-orogenic to anorogenic tectonic settings. The majority of the YG are alkaline, A-type granite and of within-plate tectonic setting (WPG). The A-type granites are subdivided into: A2-type postorogenic granites and A1-type anorogenic granites. Granite magma genesis involves: (a) fractional crystallization of mafic mantle-derived magmas; (b) anatexis or assimilation of old, upper crustal rocks (c) re - melting of juvenile mafic mantle – derived rocks underplating the continental crust. Generally, older I-type granitoids were interpreted to result from melting of mafic crust and dated at approximately 760–650 Ma, whereas younger granites suggested to be formed as a result of partial melting of a juvenile Neoproterozoic mantle source. Moreover, they formed from anatectic melts of various crustal sources that emplaced between 600 and 475 Ma.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 104 ◽  
Author(s):  
Alba Patrizia Santo

The Tuscany Magmatic Province consists of a Miocene to Pleistocene association of a wide variety of rock types, including peraluminous crustal anatectic granites and rhyolites, calcalkaline and shoshonitic suites and ultrapotassic lamproites. In addition to the magma types already recognised, the occurrence of a new, distinct magma type at Capraia and Elba islands and in mafic enclaves in the San Vincenzo rhyolites has been suggested by recent studies. This particular type of magma, represented by intermediate to acidic calcalkaline rocks showing high Sr, Ba, and LREE, is restricted to the northwestern sector of the province and to a time interval of about 8 to 4.5 Ma. New data obtained on rocks from Capraia Island have allowed for the verification of the occurrence of this new magma type, the exploration of its origin and a discussion of its possible geodynamic significance. The high-Sr-Ba andesite-dacite rocks occurring in the Laghetto area at Capraia display a composition that is intermediate between adakitic and calcalkaline rocks. It is suggested that they represent a distinct type of magma that originated at mantle pressure by melting of the lower continental crust, followed by mixing with other Capraia magmas. The geodynamic model that best explains the composition of the studied rocks is the thickening of the continental crust during continental collision, followed by extension that favoured melting of the lower crust.


Sign in / Sign up

Export Citation Format

Share Document