Tectonics and sedimentation of the upper Paleozoic foreland basin in the central Appalachians

Author(s):  
Rudy Slingerland ◽  
Christopher Beaumont

2021 ◽  
Author(s):  
Amir Kalifi ◽  
Philippe-Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

<p>The fact that the western Alps Miocene foreland basin succession is poorly dated impacts directly our understanding of the deformation kinematics of that part of the external part of the Alpine belt (France). Here we propose a multidisciplinary approach aiming at building a robust tectono-stratigraphic framework of the Miocene deposits at the basin scale (northern subalpine massifs, southern Jura, Royans, Bas-Dauphiné and La Bresse basins). Sr isotopes stratigraphy combined with magnetostratigraphy and biostratigraphy enable sequence stratigraphy subdivisions S1 to S8 between the Upper Aquitanian (-21 Ma) and the Tortonian (-9 Ma) dated with a precision <0.5 Ma. These results highlight four different palaeogeographical domains during the Miocene: (i) the oriental domain with depositional sequences S1a to S3 (~21.3 to 15Ma), (ii) the median domain, in which sequences S2, S3, S4 and S5 occurred (~17.8 to 14Ma), (iii) the occidental domain with sequences S2 to S8 (~17.8 to ~9.5Ma); and (iv) the Bressan domain, in which sequences S6 to S8 are found (~ 11.5 to ~9.5Ma).</p><p>This revised chronostratigraphy was complemented with a structural and tectono-sedimentary study based on new fieldwork data and a reappraisal of regional seismic profiles, allowing to highlight five major faults zones (FZ). It appears that the oriental, median and occidental paleogeographical domains are delineated by FZ1, FZ2 and FZ3, therefore suggesting a strong interplay between tectonics and sedimentation. Evidences of syntectonic deposits and a westward migration of the depocenters impart the following deformation chronology : a Oligocene compressive phase (P1) corresponding to thrusting above FZ1 rooted east (above) Belledonne, which generated reliefs that limited the early Miocene transgression to the east; an Early- to Middle Miocene W-WNW/E-ESE-directed compressive phase (P2) involving the Belledonne massif basal thrust, which between 18.05 +/- 0.15 Ma and 12Ma successively activated the Salève thrust fault, and the FZ2 to FZ5 from east to west. P2 deeply impacted the Miocene palaeogeographical evolution by a rapid westward migration of depocenters in response to the exhumation of piggy-back basins above the growing fault zones; a last Tortonian phase (P3), less well constrained, apparently implied a significant uplift in the subalpine massifs, combined with the activation of the frontal Jura thrust.</p>





Author(s):  
Patrick J. Gannon ◽  
M. Elliot Smith ◽  
Paul J. Umhoefer ◽  
Ryan J. Leary

Cyclic strata exposed in the Inyo Mountains of eastern California contain a continuous 6 m.y. record of deep marine deposition that spans the Pennsylvanian−Permian boundary. To better understand the geologic evolution of southwest Laurentia and the role of glacially driven eustasy in upper Paleozoic stratigraphy, we measured two detailed ∼600 m composite stratigraphic sections of the Keeler Canyon Formation and collected a handheld spectral gamma ray log. Post-depositional deformation complicates field relationships, but 1:5000 scale mapping of faults and folds permits assembly of two continuous sections. Measured strata alternate at the 5−20 m scale between intervals of fine-grained laminated marlstone and intervals of mixed carbonate and siliciclastic turbidites and debrites. Based on facies characteristics and a prominent marker horizon, we reassign the Pennsylvanian-Permian age upper Salt Tram unit of the upper Keeler Canyon Formation to a new Estelle Member. We estimate sediment accumulation rates within the Keeler Canyon Formation using published conodont biostratigraphy and correlative U-Pb geochronology from Eastern Europe combined with spectral analysis and timescale optimization using the Astrochron R package. Evolutive harmonic analysis of gamma ray-derived element concentrations reveals prominent bundled periodicities that are consistent with both long and short eccentricity cycles. Average sediment accumulation rates calculated using the time scale optimization function of Astrochron suggest a gradual increase from 40−60 m/m.y. to ∼120 m/m.y. during the late Pennsylvanian and then a minima of ∼50 m/m.y. near the Pennsylvanian−Permian boundary, which is followed by an increase to ∼175 m/m.y. into the Early Permian. This trend in sediment accumulation rates and subsequent Permian contractile deformation are compatible with flexural subsidence in a SW-migrating foreland basin related to the southern part of the late Antler orogenic system.





1969 ◽  
Author(s):  
William Peters Brosge ◽  
Irvin L. Tailleur


2018 ◽  
Vol 3 ◽  
pp. 67-100 ◽  
Author(s):  
ReBecca K. Hunt-Foster ◽  
Martin G. Lockley ◽  
Andrew R.C. Milner ◽  
John R. Foster ◽  
Neffra A. Matthews ◽  
...  

Although only recognized as a discrete stratigraphic unit since 1944, the Cedar Mountain Formation represents tens of millions of years of geological and biological history on the central Colorado Plateau. This field guide represents an attempt to pull together the results of recent research on the lithostratigraphy, chronostratigraphy, sequence stratigraphy, chemostratigraphy, and biostratigraphy of these medial Mesozoic strata that document the dynamic and complex geological history of this region. Additionally, these data provide a framework by which to examine the history of terrestrial faunas during the final breakup of Pangaea. In fact, the medial Mesozoic faunal record of eastern Utah should be considered a keystone in understanding the history of life across the northern hemisphere. Following a period of erosion and sediment bypass spanning the Jurassic–Cretaceous boundary, sedimentation across the quiescent Colorado Plateau began during the Early Cretaceous. Thickening of these basal Cretaceous strata across the northern Paradox Basin indicate that salt tectonics may have been the predominant control on deposition in this region leading to the local preservation of fossiliferous strata, while sediment bypass continued elsewhere. Thickening of overlying Aptian strata west across the San Rafael Swell provides direct evidence of the earliest development of a foreland basin with Sevier thrusting that postdates geochemical evidence for the initial development of a rain shadow.



2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.



Sign in / Sign up

Export Citation Format

Share Document