scholarly journals Oxygen isotope evidence for large-scale interaction between meteoric ground waters and Tertiary Granodiorite Intrusions, Western Cascade Range, Oregon

1971 ◽  
Vol 76 (32) ◽  
pp. 7855-7874 ◽  
Author(s):  
Hugh P. Taylor
2002 ◽  
Vol 204 (1-2) ◽  
pp. 151-165 ◽  
Author(s):  
Matthew J. Kohn ◽  
Jennifer L. Miselis ◽  
Theodore J. Fremd

1980 ◽  
Vol 17 (1) ◽  
pp. 132-141 ◽  
Author(s):  
F. J. Longstaffe ◽  
T. E. Smith ◽  
K. Muehlenbachs

The oxygen isotope ratios for 127 rocks and coexisting minerals from Paleozoic granitoids and clastic metasedimentary rocks of southwestern Nova Scotia have been measured. The whole-rock δ18O values for samples of the South Mountain batholith range from 10.1–12.0‰.But discrete granitoid plutons, located to the south of the South Mountain batholith, have lower δ18O values (7.8–10.4‰). Coexisting minerals from the Nova Scotia granitoids are near isotopic equilibrium, indicating that the whole-rock δ18O values primarily reflect the δ18O of the magma, rather than secondary alteration processes. The Meguma Group clastic metasedimentary rocks that host the Nova Scotia granitoids range in δ18O from 10.1–12.9‰. These clastic metasedimentary rocks show no systematic geographic variation in δ18O. The greenschist facies Meguma Group rocks that host the South Mountain batholith have similar δ18O values to the amphibolite facies equivalents located about the southern discrete plutons. Large scale isotopic exchange between the Meguma Group and the South Mountain batholith, or the southern plutons, is not evident.The relatively high δ18O values of the peraluminous South Mountain batholith (10.1–12.0‰) indicate that it formed by anatexis of 18O-rich clastic metasedimentary rocks. The southern plutons were also derived by partial melting of clastic metasedimentary rocks, but their lower δ18O values reflect exchange of the source material with a low 18O reservoir (mafic magmas?) prior to, or during anatexis.The sheared Brenton pluton is much lower in δ18O (5.0‰) than any of the other rocks, probably because of exchange with low 18O fluids during shearing.


2004 ◽  
Vol 68 (20) ◽  
pp. 4145-4165 ◽  
Author(s):  
Yong-Fei Zheng ◽  
Yuan-Bao Wu ◽  
Fu-Kun Chen ◽  
Bing Gong ◽  
Long Li ◽  
...  

2015 ◽  
Vol 11 (4) ◽  
pp. 2977-3018 ◽  
Author(s):  
K. M. Pascher ◽  
C. J. Hollis ◽  
S. M. Bohaty ◽  
G. Cortese ◽  
R. M. McKay

Abstract. The Eocene was characterised by "greenhouse" climate conditions that were gradually terminated by a long-term cooling trend through the middle and late Eocene. This long-term trend was determined by several large-scale climate perturbations that culminated in a shift to "ice-house" climates at the Eocene–Oligocene Transition. Geochemical and micropaleontological proxies suggest that tropical-to-subtropical sea-surface temperatures persisted into the late Eocene in the high-latitude Southwest Pacific Ocean. Here, we present radiolarian microfossil assemblage and foraminiferal oxygen and carbon stable isotope data from Deep Sea Drilling Project (DSDP) Sites 277, 280, 281 and 283 from the middle Eocene to early Oligocene (~ 40–33 Ma) to identify oceanographic changes in the Southwest Pacific across this major transition in Earth's climate history. The Middle Eocene Climatic Optimum at ~ 40 Ma is characterised by a negative shift in foraminiferal oxygen isotope values and a radiolarian assemblage consisting of about 5 % of low latitude taxa Amphicraspedum prolixum group and Amphymenium murrayanum. In the early late Eocene at ~ 37 Ma, a positive oxygen isotope shift can be correlated to the Priabonian Oxygen Isotope Maximum (PrOM) event – a short-lived cooling event recognized throughout the Southern Ocean. Radiolarian abundance, diversity, and preservation increase during the middle of this event at Site 277 at the same time as diatoms. The PrOM and latest Eocene radiolarian assemblages are characterised by abundant high-latitude taxa. These high-latitude taxa also increase in abundance during the late Eocene and early Oligocene at DSDP Sites 280, 281 and 283 and are associated with very high diatom abundance. We therefore infer a~northward expansion of high-latitude radiolarian taxa onto the Campbell Plateau towards the end of the late Eocene. In the early Oligocene (~ 33 Ma) there is an overall decrease in radiolarian abundance and diversity at Site 277, and diatoms are absent. These data indicate that, once the Tasman Gateway was fully open in the early Oligocene, a frontal system similar to the present day was established, with nutrient-depleted subantarctic waters bathing the area around DSDP Site 277, resulting in a more oligotrophic siliceous plankton assemblage.


Sign in / Sign up

Export Citation Format

Share Document