scholarly journals Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: 1. Analysis of Great Circle Phase Velocities

1983 ◽  
Vol 88 (B12) ◽  
pp. 10267-10283 ◽  
Author(s):  
Ichiro Nakanishi ◽  
Don L. Anderson
1964 ◽  
Vol 54 (2) ◽  
pp. 571-610
Author(s):  
George E. Backus

ABSTRACT If the averages of the reciprocal phase velocity c−1 of a given Rayleigh or Love mode over various great circular or great semicircular paths are known, information can be extracted about how c−1 varies with geographical position. Assuming that geometrical optics is applicable, it is shown that if c−1 is isotropic its great circular averages determine only the sum of the values of c−1 at antipodal points and not their difference. The great semicircular averages determine the difference as well. If c−1 is anisotropic through any cause other than the earth's rotation, even great semicircular averages do not determine c−1 completely. Rotation has negligible effect on Love waves, and if it is the only anisotropy present its effect on Rayleigh waves can be measured and removed by comparing the averages of c−1 for the two directions of travel around any great circle not intersecting the poles of rotation. Only great circular and great semicircular paths are considered because every earthquake produces two averages of c−1 over such paths for each seismic station. No other paths permit such rapid accumulation of data when the azimuthal variations of the earthquakes' radiation patterns are unknown. Expansion of the data in generalized spherical harmonics circumvents the fact that the explicit formulas for c−1 in terms of its great circular or great semicircular integrals require differentiation of the data. Formulas are given for calculating the generalized spherical harmonics numerically.


Author(s):  
Marina Sokolova ◽  
Yuri Astapov ◽  
Dmitrii Khristich

Dynamic methods for identifying a model of a nonlinearly elastic deformable body are considered. By the effective phase velocities of longitudinal and transverse waves propagating along and across the axis of the compressed bar, it is possible to determine five elastic constants of the second and third orders included in the model relations. Calculation formulae are obtained and an example of determining the dependence of phase velocities on the preliminary deformation for polyamide 6 is given. The influence of preliminary deformations on polar diagrams of wave velocities is investigated.


1963 ◽  
Vol 53 (4) ◽  
pp. 741-764 ◽  
Author(s):  
M. Nafi Toksöz ◽  
Ari Ben-Menahem

Abstract Phase velocities of Love waves from five major earthquakes are measured over six great circle paths in the period range of 50 to 400 seconds. For two of the great circle paths the phase velocities of Rayleigh waves are also obtained. The digitized seismograph traces are Fourier analyzed, and the phase spectra are used in determining the phase velocities. Where the great circle paths are close, the phase velocities over these paths are found to be in very good agreement with each other indicating that the measured velocities are accurate and reliable. Phase velocities of Love waves over paths that lie far from each other are different, and this difference is consistent and much greater than the experimental error. From this it is concluded that there are lateral variations in the structure of the earth's mantle. One interpretation of this variation is that the mantle under the continents is different from that under the oceans, since the path with the highest phase velocities is almost completely oceanic. This interpretation, however, is not unique and variations under the oceans and continents are also possible. Group velocities are computed from the phase velocities and are also directly measured from the seismograms. The group-velocity curve of Love waves has a plateau between periods of 100 and 300 seconds with a shallow minimum at about 290 seconds. The sources of error in both Fourier analysis and direct time domain methods of phase velocity measurement are discussed.


1966 ◽  
Vol 56 (5) ◽  
pp. 1137-1145
Author(s):  
V. G. Gabriel ◽  
John T. Kuo

Abstract Phase velocities were determined for the New Delhi-Lahore profile by using data from these two stations and earthquakes located approximately on the great circle path through the stations. The phase velocities were found to be higher than those expected for normal continental structures and somewhat similar to those found by Brune and Dorman (1963) for the Canadian shield. A structural model, based on the phase velocity values of the CANSD model given by Brune and Dorman (1963) and consistent with the local geology, was evaluated and is presented herewith as the INDSD model. It is postulated that high phase velocity values in the Lahore-New Delhi profile indicate the shield character of the crustal structure along the profile, as an extension of the Indian shield located south and southeast of it.


2021 ◽  
Author(s):  
Giovanni Diaferia ◽  
Fabrizio Magrini ◽  
Matthew Agius ◽  
Fabio Cammarano

<p><span>The dynamics of crustal extension and the crust-mantle interaction i</span>n the Central-Western Mediterranean and Italian peninsula (i.e. Liguro-Provençal and Tyrrhenian Basin), and plate convergence (i.e. Alpine and Apennines chains) are key for the understating of the current geodynamics setting and its evolution<span> in the region</span>. However, open questions <span>such as the style, depth and extent of the deformation </span>still exist despite the wealth of seismological and non-seismological data acquired in the past decades. In this context, it is necessary to provide improved subsurface models in terms of seismic velocities, from which better constraints on the geodynamic models can be derived.</p><p>We use seismic ambient noise for retrieving phase velocities of Rayleigh and Love waves in the 4-35 s period range, using private (LiSard network<span> in Sardinia island</span>) and publicly available continuous recordings from more than 500 seismic stations. Considering the excellent coverage and the short period of recovered phase velocities, our study aims to provide an unprecedented, high-resolution image of the shallow crust and uppermost mantle.</p><p>We employ a Bayesian trans-<span>dimensional</span>, Monte Carlo Markov chain inversion approach that requires no a-priori model nor a fixed parametrization. In addition to the (isotropic) shear wave velocity structure, we also recover the values of radial anisotropy (ξ=(V<sub>SH</sub>/V<sub>SV</sub>)<sup>2</sup>) as a function of depth, thanks to the joint inversion of both Rayleigh and Love phase velocities.</p><p>Focusing on radial anisotropy, this appears clearly uncoupled with respect to the shear wave velocity structure. The largest negative anisotropy anomalies (V<sub>SH</sub><V<sub>SV</sub>, ξ<0.9) are found in the Liguro-Provençal and western Tyrrhenian basins in the top 10-15 km, suggesting a common structural imprint inherited during the extensional phases of such basins. Conversely, the eastern Tyrrhenian basin shows positive radial anisotropy (V<sub>SH</sub>>V<sub>SV</sub>, ξ>1.1) within the same depth range. This evidence, combined with the observed shear wave velocities typical of the uppermost mantle, corroborates the presence of a sub-horizontal asthenospheric flow driving the current extension and <span>oceanization </span>of the eastern Tyrrhenian basins.</p><p>Moving towards the Italian mainland, a strong anomaly of negative anisotropy appears in the eastern portion of the Apennines chain. We relate such an anisotropic signal with the ongoing compressive regime affecting the area. Here, the high-angle thrust faults and folds, that accommodates the horizontal shortening, obliterate the horizontal layering of the sedimentary deposits, currently constituting the flanks of the fold system.</p><p>Our results suggest that the combination of radial anisotropy and shear wave velocities can unravel key characteristics of the crust and uppermost mantle, such as inherited or currently active structures resulting from past or ongoing geodynamic processes.</p>


Author(s):  
Alexey Stovas

Summary Perturbation method applied for the phase velocities in the monoclinic model with a horizontal symmetry plane gives insight into the seismic signatures of P, S1 and S2 wave modes associated with the monoclinic stiffness coefficients. The perturbation-based approximations are very accurate and can be used for modeling and inversion purpose.


1968 ◽  
Vol 58 (6) ◽  
pp. 1821-1831
Author(s):  
A. J. Wickens ◽  
K. Pec

ABSTRACT Love-wave phase velocities were determined for five adjacent segments of a 5000 kilometer great circle path from Mould Bay, Canada, to Tucson, Arizona. Mean-phase velocity curves were obtained from curves based on reciprocal data, thus minimizing the detrimental effects of non-parallel layering. By careful selection and precise treatment of the data over relatively short distances (800 km), detail hitherto suppressed has been retained. Finally, by using reciprocal seismograms, the effect of sloping interfaces was observed. The crustal and upper mantle models obtained indicate significant differences in structure between different provinces of the Precambrian Shield.


Sign in / Sign up

Export Citation Format

Share Document