Sea level variabilities in the Gulf Stream between Cape Hatteras and 50°W: A Geosat study

1990 ◽  
Vol 95 (C10) ◽  
pp. 17957 ◽  
Author(s):  
Jorge Vazquez ◽  
Victor Zlotnicki ◽  
Lee-Lueng Fu
Keyword(s):  
2011 ◽  
Vol 41 (9) ◽  
pp. 1720-1740 ◽  
Author(s):  
F.-H. Xu ◽  
L.-Y. Oey

Abstract It is quite widely accepted that the along-shelf pressure gradient (ASPG) contributes in driving shelf currents in the Middle Atlantic Bight (MAB) off the northeastern U.S. coast; its origin, however, remains a subject for debate. Based on analyses of 16 yr (1993–2008) of satellite, tide gauge, river, and wind data and numerical experiments, the authors suggest that river and Coastal Labrador Sea Water (CLSW) transport contribute to a positive mean ASPG (tilt up northward) in the ratio of approximately 1:7 (i.e., CLSW dominates), whereas wind and the Gulf Stream tend to produce a negative mean ASPG in the ratio of approximately 1:6. Data also indicate seasonal and interannual variations of ASPG that correlate with the Gulf Stream’s shift and eddy kinetic energy north of the Gulf Stream (N-EKE) due to warm-core rings. A southward shift in the Gulf Stream produces a sea level drop north of Cape Hatteras, which is most rapid in winter. The N-EKE peaks in late spring to early summer and is larger in some years than others. A process model is used to show that ring propagation along the MAB slope and ring impingement upon the shelf break north of Cape Hatteras generate along-isobath density gradients and cross-shelfbreak transports that produce sea level change on the shelf; the dominant ageostrophic term in the depth-integrated vorticity balance is the joint effect of baroclinicity and relief (JEBAR) term. In particular, the shelf’s sea surface slopes down to the north when rings approach Cape Hatteras.


2016 ◽  
Vol 46 (3) ◽  
pp. 817-826 ◽  
Author(s):  
Alejandra Sanchez-Franks ◽  
Sultan Hameed ◽  
Robert E. Wilson

AbstractThe Gulf Stream’s north wall east of Cape Hatteras marks the abrupt change in velocity and water properties between the slope sea to the north and the Gulf Stream itself. An index of the north wall position constructed by Taylor and Stephens, called Gulf Stream north wall (GSNW), is analyzed in terms of interannual changes in the Icelandic low (IL) pressure anomaly and longitudinal displacement. Sea surface temperature (SST) composites suggest that when IL pressure is anomalously low, there are lower temperatures in the Labrador Sea and south of the Grand Banks. Two years later, warm SST anomalies are seen over the Northern Recirculation Gyre and a northward shift in the GSNW occurs. Similar changes in SSTs occur during winters in which the IL is anomalously west, resulting in a northward displacement of the GSNW 3 years later. Although time lags of 2 and 3 years between the IL and the GSNW are used in the calculations, it is shown that lags with respect to each atmospheric variable are statistically significant at the 5% level over a range of years. Utilizing the appropriate time lags between the GSNW index and the IL pressure and longitude, as well as the Southern Oscillation index, a regression prediction scheme is developed for forecasting the GSNW with a lead time of 1 year. This scheme, which uses only prior information, was used to forecast the GSNW from 1994 to 2015. The correlation between the observed and forecasted values for 1994–2014 was 0.60, significant at the 1% level. The predicted value for 2015 indicates a small northward shift of the GSNW from its 2014 position.


Ocean Science ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 997-1016
Author(s):  
Tal Ezer ◽  
Sönke Dangendorf

Abstract. A new monthly global sea level reconstruction for 1900–2015 was analyzed and compared with various observations to examine regional variability and trends in the ocean dynamics of the western North Atlantic Ocean and the US East Coast. Proxies of the Gulf Stream (GS) strength in the Mid-Atlantic Bight (GS-MAB) and in the South Atlantic Bight (GS-SAB) were derived from sea level differences across the GS. While decadal oscillations dominate the 116-year record, the analysis showed an unprecedented long period of weakening in the GS flow since the late 1990s. The only other period of long weakening in the record was during the 1960s–1970s, and red noise experiments showed that is very unlikely that those just occurred by chance. Ensemble empirical mode decomposition (EEMD) was used to separate oscillations at different timescales, showing that the low-frequency variability of the GS is connected to the Atlantic Multi-decadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The recent weakening of the reconstructed GS-MAB was mostly influenced by weakening of the upper mid-ocean transport component of AMOC as observed by the RAPID measurements for 2005–2015. Comparison between the reconstructed sea level near the coast and tide gauge data for 1927–2015 showed that the reconstruction underestimated observed coastal sea level variability for timescales less than ∼5 years, but lower-frequency variability of coastal sea level was captured very well in both amplitude and phase by the reconstruction. Comparison between the GS-SAB proxy and the observed Florida Current transport for 1982–2015 also showed significant correlations for oscillations with periods longer than ∼5 years. The study demonstrated that despite the coarse horizontal resolution of the global reconstruction (1∘ × 1∘), long-term variations in regional dynamics can be captured quite well, thus making the data useful for studies of long-term variability in other regions as well.


2007 ◽  
Vol 37 (4) ◽  
pp. 1051-1065 ◽  
Author(s):  
Guoqi Han

Abstract Seasonal and interannual sea level and current variations over the Scotian slope are examined using 10 years of Ocean Topography Experiment (TOPEX)/Poseidon (T/P) satellite altimeter data. Geostrophic surface current anomalies normal to ground tracks are derived from the along-track gradients of sea level anomalies. The altimetric current anomalies are combined with a climatological mean circulation field of a finite-element model to construct nominal absolute currents. The seasonal mean results indicate that the sea level is highest in late summer and lowest in late winter and that the surface slope circulation is strong in winter/autumn and weaker in summer/spring. The total transport associated with the westward shelf-edge current and with the eastward slope current, calculated by combining the T/P data with a climatological seasonal mean density field, reveals a substantial seasonal change dominated by the barotropic component. The present analysis reveals prominent interannual changes of the sea level and current anomalies for the study period. The sea level was lowest in 1996/97, when the Gulf Stream was in its most southern position. The mean winter circulation over the Scotian slope was strongest (up to 30 cm s−1 in both the southwestward shelf-edge current and northeastward slope current) in 1998 and weakest (weaker and broader shelf-edge current) in 1996, which may be related to the fluctuation of the equatorward Labrador Current strength and of the Gulf Stream north–south position. The study also suggests that the root-mean-square current magnitude is positively correlated with the occurrence of the Gulf Stream warm-core rings (WCRs) on the interannual scale, while WCR yearly mean kinematic properties seem to have small variations.


2019 ◽  
Vol 49 (8) ◽  
pp. 2115-2132 ◽  
Author(s):  
Joël J.-M. Hirschi ◽  
Eleanor Frajka-Williams ◽  
Adam T. Blaker ◽  
Bablu Sinha ◽  
Andrew Coward ◽  
...  

AbstractSatellite observations and output from a high-resolution ocean model are used to investigate how the Loop Current in the Gulf of Mexico affects the Gulf Stream transport through the Florida Straits. We find that the expansion (contraction) of the Loop Current leads to lower (higher) transports through the Straits of Florida. The associated surface velocity anomalies are coherent from the southwestern tip of Florida to Cape Hatteras. A simple continuity-based argument can be used to explain the link between the Loop Current and the downstream Gulf Stream transport: as the Loop Current lengthens (shortens) its path in the Gulf of Mexico, the flow out of the Gulf decreases (increases). Anomalies in the surface velocity field are first seen to the southwest of Florida and within 4 weeks propagate through the Florida Straits up to Cape Hatteras and into the Gulf Stream Extension. In both the observations and the model this propagation can be seen as pulses in the surface velocities. We estimate that the Loop Current variability can be linked to a variability of several Sverdrups (1Sv = 106 m3 s−1) through the Florida Straits. The exact timing of the Loop Current variability is largely unpredictable beyond a few weeks and its variability is therefore likely a major contributor to the chaotic/intrinsic variability of the Gulf Stream. However, the time lag between the Loop Current and the flow downstream of the Gulf of Mexico means that if a lengthening/shortening of the Loop Current is observed this introduces some predictability in the downstream flow for a few weeks.


Sign in / Sign up

Export Citation Format

Share Document