Study of cosmic-ray intensity measured by Mariner 2 and by ground neutron monitors during the Forbush decrease of September 30, 1962

1965 ◽  
Vol 70 (15) ◽  
pp. 3765-3770 ◽  
Author(s):  
U. R. Rao
1971 ◽  
Vol 49 (2) ◽  
pp. 265-269 ◽  
Author(s):  
U. D. Desai

Earlier studies have interpreted the Forbush decrease of 23 September 1966 in terms of two phases; an initial predecrease and a later worldwide decrease. This interpretation precluded the possibility of correlation with a concurrent magnetic storm and led to an explanation of the predecrease (Mathews et al. 1968) in terms of a shadow cast by a distant plasma cloud approaching from a direction 85° to the west of the sun–earth line.In the present study, particle and magnetic field data from satellite-borne detectors and ground-based neutron monitors clearly show the onset of the Forbush decrease coincident with the SSC magnetic storm. It is pointed out that the Forbush decrease arises from a corotating shock front approaching from the east of the sun–earth line and is not associated with any solar flare effect. Further, the increases observed by the various neutron monitors 9 h after the onset of the Forbush decrease are interpreted to be an enhancement of the diurnal anisotropy. An example of an increase in intensity in the IMP 3 detector arising from electron contributions is also pointed out.


2005 ◽  
Vol 20 (29) ◽  
pp. 6717-6719 ◽  
Author(s):  
S. K. MISHRA ◽  
D. P. TIWARI ◽  
S. C. KAUSHIK

Transient decrease in cosmic ray intensity following by a slow recovery typically lasting for several days is identified as Forbush decrease (Fd) event. As a result the geomagnetic index (Dst) decreased up to 300 nT, indicating a large geomagnetic storm and the percentage Fd decrease has gone to 16% giving rise a cosmic ray storm. Both events coincided with interplanetary conditions. Therefore, a systematic study has been performed to investigate the variation of cosmic ray intensity along with the interplanetary and geomagnetic disturbances. Results indicate a strong relationship between geomagnetic activity and Forbush decrease on short-term basis. Two types of interplanetary transient disturbances, namely magnetic cloud events and bidirectional events are analyzed to study the short-term changes in the solar wind (SW) plasma components as well as in cosmic ray intensity.


1968 ◽  
Vol 46 (10) ◽  
pp. S819-S822
Author(s):  
Pekka J. Tanskanen

Data from super neutron monitors at Deep River, Churchill, Resolute, and Alert have been used to study the daily variation of cosmic-ray intensity during 1965 and 1966. Intensities have been examined on a daily, weekly, and monthly basis as a function of the asymptotic direction of vertically incident 7.5-BeV particles. The data have been analyzed in an earth-centered solar-ecliptic coordinate system in which daily (due to the earth's rotation) and seasonal (due to the inclination of the earth's axis to the ecliptic plane) variations of the asymptotic directions are considered.During undisturbed periods the daily variation has been examined by applying a digital filter to the pressure-corrected data and also to the data after subtraction of a variable-amplitude Parker–Axford theoretical diurnal variation. Particular attention has been paid to the dependence of the observed daily variation on the solar-ecliptic latitude of the asymptotic direction.Seventy-three percent of the weeks considered in 1965 and 1966 give the phase of the first harmonic in a direction 85° ± 35 °E. Sixty percent of the weekly periods show a daily variation as a function of solar-ecliptic latitude which is in agreement with the Parker–Axford "streaming-velocity" theory. During Forbush decreases the diurnal phase shifts towards earlier hours and the amplitude increases to two to three times the predecrease level.


Author(s):  
Dimitra Lingri ◽  
Helen Mavromichalaki ◽  
Anatoly V. Belov ◽  
Eugenia A. Eroshenko

Many previous studies have shown that before the beginning of a Forbush Decrease (FD) of the cosmic ray intensity, a precursor signal can be observed. All these surveys were focused on FDs that are associated with a sudden storm com- mencement (SSC). In this work we demonstrate that precursors could also be observed in events without a SSC that is determined by an abrupt increase of the interplanetary magnetic field. The type of precursory signals and their diversity among the events are the main purpose of this study. We try to figure out similarities and differences on the signals and the associated events from both categories in the last fifty years, from 1969 to 2019, using the same selection criteria of the under investigation FDs. Simultaneously the orientation of the upcoming solar disturbances in comparison to the way they configure the increase of the interplanetary magnetic field and create these signals are discussed.


1980 ◽  
Vol 91 ◽  
pp. 393-398
Author(s):  
A. Geranios

Observations of cosmic ray intensity depressions by earth bound neutron monitors and measurements of interplanetary parameter's variations aboard geocentric satellites in the period January 1972-July 1974 are analysed and grouped according to their correlation among them. From this analysis of about 30 cases it came out that the majority of the depressions correlates with the average propagation speed of interplanetary shocks as well as with the amplitude of the interplanetary magnetic field after the eruption of a solar flare. About one fourth of the events correlates with corotating fast solar wind streams. As the recovery time of the shock-related depressions depends strongly on the heliographic longitude of the causitive solar flare, it seems that the cosmic ray modulation region has a corotative-like feature.


1968 ◽  
Vol 46 (10) ◽  
pp. S903-S906 ◽  
Author(s):  
J. A. Lockwood ◽  
W. R. Webber

The variation in the cosmic-ray intensity recorded by neutron monitors from 1958 to 1965 has been investigated to deduce the form of the solar modulation of the cosmic radiation. The observed changes in the intensity at the neutron monitor stations, averaged over quarter-year periods, were compared with changes calculated using modulation functions depending upon energy, rigidity, and velocity × rigidity. These calculations were based upon the revised differential response functions deduced by Lockwood and Webber (1967). The variance between the observed and calculated changes in the neutron monitor intensities at different stations was minimized to determine the best form of the solar modulation function. We find that the change of the primary cosmic radiation, deduced from the change in the neutron monitor intensity as well as from direct measurements of the primary flux, can be described by a modulation of the form exp(–K/P) in the rigidity range 0.5 < P < 50 GV. The change between 1959 and 1965 can be fitted with K = 1.94 ± 0.09 and between 1963 and 1965 with K = 0.36 ± 0.05.


1962 ◽  
Vol 40 (5) ◽  
pp. 540-549 ◽  
Author(s):  
B. G. Wilson ◽  
D. C. Rose ◽  
Margaret D. Wilson

Three small increases in cosmic-ray intensity, observed in high counting rate neutron monitors in Canada, are described and the results examined in relation to the impact zone effect with particular reference to recent studies by McCracken. Pronounced impact zone effects were observed during the July 18, 1961, event, the largest of these three increases, while the September 3, 1960, event showed no such effects. Considerations of the state of the interplanetary magnetic fields at these times show that these results are consistent with McCracken's explanations. The sharp rise to maximum of the July 20, 1961, increase would suggest strong impact zone effects, but such conclusions that can be drawn from the limited data and the small magnitude of the increase suggest that it does not conform with the usual pattern.


1961 ◽  
Vol 39 (2) ◽  
pp. 239-251 ◽  
Author(s):  
D. C. Rose ◽  
S. M. Lapointe

The intensity–time curves for cosmic rays recorded at some 30 stations distributed all over the world are examined for structure in the recovery period from the third in a series of three closely spaced Forbush-type decreases which occurred in the middle of July 1959. It is shown that the structure of intensity peaks is regular and that these occur at each station at the same effective local time. It is found that this is consistent with the hypothesis that recovery from a very deep Forbush-type decrease is first apparent in directions making 15° and 165° with the sun–earth line respectively. The analyses suggest further, that during recovery from this deep Forbush decrease temporary openings appeared in the intensity depressing mechanism which allowed intensity increases in limited directions.


Sign in / Sign up

Export Citation Format

Share Document