North American apparent polar wander, plate motion, and left-oblique convergence: Late Jurassic-Early Cretaceous orogenic consequences

Tectonics ◽  
1989 ◽  
Vol 8 (3) ◽  
pp. 443-451 ◽  
Author(s):  
Steven R. May ◽  
Myrl E. Beck ◽  
Robert F. Butler
2013 ◽  
Vol 50 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Richard L. Cifelli ◽  
Cynthia L. Gordon ◽  
Thomas R. Lipka

Multituberculates, though among the most commonly encountered mammalian fossils of the Mesozoic, are poorly known from the North American Early Cretaceous, with only one taxon named to date. Herein we describe Argillomys marylandensis, gen. et sp. nov., from the Early Cretaceous of Maryland, based on an isolated M2. Argillomys represents the second mammal known from the Arundel Clay facies of the Patuxent Formation (Lower Cretaceous: Aptian). Though distinctive in its combination of characters (e.g., enamel ornamentation consisting of ribs and grooves only, cusp formula 2:4, presence of distinct cusp on anterobuccal ridge, enlargement of second cusp on buccal row, central position of ultimate cusp in lingual row, great relative length), the broader affinities of Argillomys cannot be established because of non-representation of the antemolar dentition. Based on lack of apomorphies commonly seen among Cimolodonta (e.g., three or more cusps present in buccal row, fusion of cusps in lingual row, cusps strongly pyramidal and separated by narrow grooves), we provisionally regard Argillomys as a multituberculate of “plagiaulacidan” grade. Intriguingly, it is comparable in certain respects to some unnamed Paulchoffatiidae, a family otherwise known from the Late Jurassic – Early Cretaceous of the Iberian Peninsula.


2006 ◽  
Vol 143 (6) ◽  
pp. 753-770 ◽  
Author(s):  
REISHI TAKASHIMA ◽  
HIROSHI NISHI ◽  
TAKEYOSHI YOSHIDA

The Sorachi Group, composed of Upper Jurassic ophiolite and Lower Cretaceous island-arc volcano-sedimentary cover, provides a record of Late Jurassic–Early Cretaceous sedimentation and volcanism in an island-arc setting off the eastern margin of the Asian continent. Stratigraphic changes in the nature and volume of the Sorachi Group volcanic and volcaniclastic rocks reveal four tectonic stages. These stages resulted from changes in the subduction direction of the Pacific oceanic plate. Stage I in the Late Jurassic was characterized by extensive submarine eruptions of tholeiitic basalt from the back-arc basin. Slab roll-back caused rifting and sea-floor spreading in the supra-subduction zone along the active Asian continental margin. Stage II corresponded to the Berriasian and featured localized trachyandesitic volcanism that formed volcanic islands with typical island-arc chemical compositions. At the beginning of this stage, movement of the Pacific oceanic plate shifted from northeastward to northwestward. During Stage III, in the Valanginian, submarine basaltic volcanism was followed by subsidence. The Pacific oceanic plate motion turned clockwise, and the plate boundary between the Asian continent and the Pacific oceanic plate changed from convergent to transform. During Stage IV in the Hauterivian–Barremian, in situ volcanism ceased in the Sorachi–Yezo basin, and the volcanic front migrated west of the Sorachi–Yezo basin.


2018 ◽  
Vol 40 (1) ◽  
pp. 488
Author(s):  
M. D. Tranos ◽  
A. P. Plougarlis ◽  
D. M. Mountrakis

Geological mapping along the boundary of Almopia and Paikon zone in the 'Nerostoma' region, NNW of Lakka village defines mafic volcanogenic rocL·, meta-pelites and radiolarites, thick-bedded to massive micritic limestones and flysch meta-sediments that dip mainly towards SW. Middle-Late Cretaceous fossiliferous limestones overlie unconformably the flysch meta-sediments and are characterised only by a primary foliation SO that dips at shallow angles to the NNW-N. Secondary foliations SI (sub-parallel to SO) and S2 are observed in the meta-clastic rocks. A Dl event caused Fl and progressively F2 folds to which S2 is the axial plane schistosity dipping to SW. This event which has not affected the fossiliferous limestones is related to an oblique convergence or inclined transpression during the Late Jurassic-Early Cretaceous. A D2 event dated in Early Tertiary caused an intense NE-thrusting and S-C cataclastic fabric defining top-to-the NE sense-of-shear. At many parts, the unconformity contact between the fossiliferous limestones and the underlying flysch is obliterated by this thrusting event. As a result, the boundary between Almopia and Paikon zones as paleo-geographically defined in this area seems to be meaningless for the Jurassic-Cretaceous times.


1990 ◽  
Vol 27 (1) ◽  
pp. 117-123 ◽  
Author(s):  
N. Mortimer ◽  
P. van der Heyden ◽  
R. L. Armstrong ◽  
J. Harakal

U–Pb dating of zircon from the Guichon Creek batholith indicates an emplacement age of 210 ± 3 Ma. Comparison with previously published K–Ar (211–188 Ma) and Rb–Sr (205 and 196 Ma) dates reveals that intrusion, mineralization, cooling, and uplift of the batholith took some 20 Ma, spanning the Triassic–Jurassic boundary on the Decade of North American Geology (DNAG) time scale.The Mount Martley pluton and Tiffin Creek stock yield Late Jurassic dates of 155 ± 2 Ma (U–Pb, zircon) and 152 ± 5 Ma (K–Ar, hornblende), respectively, and provide a reliable minimum age (Kimmeridgian) for penetrative deformation in the Cache Creek terrane. K–Ar whole-rock dates from Cache Creek terrane and Ashcroft Formation argillites range from Early Permian (266 ± 8 Ma) and Early Jurassic (194 ± 6 Ma) to Late Jurassic, Kimmeridgian (154 ± 5 Ma). We interpret the younger dates as recording Middle–Late Jurassic tectonism and the older ones as possible relics from earlier deformation episodes.An Early Cretaceous K–Ar date (129 ± 5 Ma) for a lamprophyre dike that cuts the Nicola Group suggests that the Early Cretaceous magmatic arc of the Coast Plutonic Complex had an eastern alkalic fringe in the Intermontane Belt.


2018 ◽  
Author(s):  
James G. Ogg ◽  
◽  
Chunju Huang ◽  
Chunju Huang ◽  
Linda A. Hinnov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document