scholarly journals Late Jurassic–Early Cretaceous intra-arc sedimentation and volcanism linked to plate motion change in northern Japan

2006 ◽  
Vol 143 (6) ◽  
pp. 753-770 ◽  
Author(s):  
REISHI TAKASHIMA ◽  
HIROSHI NISHI ◽  
TAKEYOSHI YOSHIDA

The Sorachi Group, composed of Upper Jurassic ophiolite and Lower Cretaceous island-arc volcano-sedimentary cover, provides a record of Late Jurassic–Early Cretaceous sedimentation and volcanism in an island-arc setting off the eastern margin of the Asian continent. Stratigraphic changes in the nature and volume of the Sorachi Group volcanic and volcaniclastic rocks reveal four tectonic stages. These stages resulted from changes in the subduction direction of the Pacific oceanic plate. Stage I in the Late Jurassic was characterized by extensive submarine eruptions of tholeiitic basalt from the back-arc basin. Slab roll-back caused rifting and sea-floor spreading in the supra-subduction zone along the active Asian continental margin. Stage II corresponded to the Berriasian and featured localized trachyandesitic volcanism that formed volcanic islands with typical island-arc chemical compositions. At the beginning of this stage, movement of the Pacific oceanic plate shifted from northeastward to northwestward. During Stage III, in the Valanginian, submarine basaltic volcanism was followed by subsidence. The Pacific oceanic plate motion turned clockwise, and the plate boundary between the Asian continent and the Pacific oceanic plate changed from convergent to transform. During Stage IV in the Hauterivian–Barremian, in situ volcanism ceased in the Sorachi–Yezo basin, and the volcanic front migrated west of the Sorachi–Yezo basin.

1992 ◽  
Vol 108 (1-3) ◽  
pp. 61-77 ◽  
Author(s):  
H LAPIERRE ◽  
L ORTIZ ◽  
W ABOUCHAMI ◽  
O MONOD ◽  
C COULON ◽  
...  

Geology ◽  
2021 ◽  
Vol 49 (5) ◽  
pp. 602-606 ◽  
Author(s):  
Richard O. Lease ◽  
Peter J. Haeussler ◽  
Robert C. Witter ◽  
Daniel F. Stockli ◽  
Adrian M. Bender ◽  
...  

Abstract The Fairweather fault (southeastern Alaska, USA) is Earth’s fastest-slipping intracontinental strike-slip fault, but its long-term role in localizing Yakutat–(Pacific–)North America plate motion is poorly constrained. This plate boundary fault transitions northward from pure strike slip to transpression where it comes onshore and undergoes a <25°, 30-km-long restraining double bend. To the east, apatite (U-Th)/He (AHe) ages indicate that North America exhumation rates increase stepwise from ∼0.7 to 1.7 km/m.y. across the bend. In contrast, to the west, AHe age-depth data indicate that extremely rapid 5–10 km/m.y. Yakutat exhumation rates are localized within the bend. Further northwest, Yakutat AHe and zircon (U-Th)/He (ZHe) ages gradually increase from 0.3 to 2.6 Ma over 150 km and depict an interval of extremely rapid >6–8 km/m.y. exhumation rates that increases in age away from the bend. We interpret this migration of rapid, transient exhumation to reflect prolonged advection of the Cenozoic–Cretaceous sedimentary cover of the eastern Yakutat microplate through a stationary restraining bend along the edge of the North America plate. Yakutat cooling ages imply a long-term strike-slip rate (54 ± 6 km/m.y.) that mimics the millennial (53 ± 5 m/k.y.) and decadal (46 mm/yr) rates. Fairweather fault slip can account for all Pacific–North America relative plate motion throughout Quaternary time and indicates stability of highly localized plate boundary strike slip on a single fault where extreme rock uplift rates are persistently localized within a restraining bend.


1988 ◽  
Vol 129 ◽  
pp. 365-366
Author(s):  
P. M. Kroger ◽  
G. A. Lyzenga ◽  
K. S. Wallace ◽  
J. M. Davidson

The problem of understanding the deformation occurring along the Pacific-North American plate boundary in the western United States depends upon understanding the forces which drive the plates in this region. One of the primary sources of our knowledge concerning these forces lies in their manifestation as relative displacements which occur throughout the broad zone of deformation surrounding the San Andreas fault system. It is information concerning the spatial and temporal distribution of these motions which will be of greatest benefit in helping to determine which of several possible mechanisms is responsible for driving contemporary plate motions in this region.


Sign in / Sign up

Export Citation Format

Share Document