Suspended sediment discharge as related to streamflow, topography, soil, and land use

1954 ◽  
Vol 35 (2) ◽  
pp. 268 ◽  
Author(s):  
Henry W. Anderson
2004 ◽  
Vol 35 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Hafzullah Aksoy ◽  
Tanju Akar ◽  
N. Erdem Ünal

Wavelets, functions with zero mean and finite variance, have recently been found to be appropriate tools in investigating geophysical, hydrological, meteorological, and environmental processes. In this study, a wavelet-based modeling technique is presented for suspended sediment discharge time series. The model generates synthetic series statistically similar to the observed data. In the model in which the Haar wavelet is used, the available data are decomposed into detail functions. By choosing randomly from among the detail functions, synthetic suspended sediment discharge series are composed. Results are compared with those obtained from a moving-average process fitted to the data set.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1831 ◽  
Author(s):  
Donatella Pavanelli ◽  
Claudio Cavazza ◽  
Stevo Lavrnić ◽  
Attilio Toscano

Anthropogenic activities, and in particular land use/land cover (LULC) changes, have a considerable effect on rivers’ flow rates and their morphologies. A representative example of those changes and resulting impacts on the fluvial environment is the Reno Mountain Basin (RMB), located in Northern Italy. Characterized by forest exploitation and agricultural production until World War II, today the RMB consists predominantly of meadows, forests and uncultivated land, as a result of agricultural land abandonment. This study focuses on the changes of the Reno river’s morphology since the 1950s, with an objective of analyzing the factors that caused and influenced those changes. The factors considered were LULC changes, the Reno river flow rate and suspended sediment yield, and local climate data (precipitation and temperature). It was concluded that LUCL changes caused some important modifications in the riparian corridor, riverbed size, and river flow rate. A 40–80% reduction in the river bed area was observed, vegetation developed in the riparian buffer strips, and the river channel changed from braided to a single channel. The main causes identified are reductions in the river flow rate and suspended sediment yield (−36% and −38%, respectively), while climate change did not have a significant effect.


Estuaries ◽  
1978 ◽  
Vol 1 (2) ◽  
pp. 106 ◽  
Author(s):  
M. Grant Gross ◽  
M. Karweit ◽  
William B. Cronin ◽  
J. R. Schubel

2016 ◽  
Vol 542 ◽  
pp. 357-372 ◽  
Author(s):  
Gianbattista Bussi ◽  
Simon J. Dadson ◽  
Christel Prudhomme ◽  
Paul G. Whitehead

Sign in / Sign up

Export Citation Format

Share Document