New observations show ground-level ozone is increasing  Northern Hemisphere

AccessScience ◽  
2020 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 52-59
Author(s):  
A.V. Shavrina ◽  
◽  
I.A. Mikulskaya ◽  
S.I. Kiforenko ◽  
V.A. Sheminova ◽  
...  

2017 ◽  
Vol 68 (4) ◽  
pp. 824-829
Author(s):  
Cornel Ianache ◽  
Laurentiu Predescu ◽  
Mirela Predescu ◽  
Dumitru Dumitru

The serious air pollution problem has determined public concerns, worldwide. One of the main challenges for countries all over the world is caused by the elevated levels of ground-level ozone (O3) concentrations and its anthropogenic precursors. Ploiesti city, as one of the major urban area of Romania, is facing the same situation. This research aims to investigate spatial and temporal distribution characteristics of O3 in relationship with nitrogen oxides (NOx) using statistical analysis methods. Hourly O3 and NOx measurements were collected during 2014 year in Ploiesti. The results obtained showed that the ozone spatial distribution was non-normal for each month in 2014. The diurnal cycle of ground-level ozone concentrations showed a mid-day peak, while NOx diurnal variations presented 2 daily peaks, one in the morning (7:00 a.m.) and one in the afternoon (between 5:00 and 7:00 p.m.). In addition, it was observed a distinct pattern of weekly variations for O3 and NOx. Like in many other urban areas, the results indicated the presence of the �ozone weekend effect� in Ploiesti during the 2014 year, ozone concentrations being slightly higher on weekends compared to weekdays. For the same monitoring site, the nitrogen oxides were less prevalent on Saturdays and Sundays, probably due to reducing of road traffic and other pollution-generating activities on weekends than during the week.


Author(s):  
Anthony Vipin Das ◽  
Sayan Basu

The aim of this study was to describe the correlation between the meteorological and air pollution parameters with the temporal pattern of presentation of recent onset allergic eye disease (AED). This cross-sectional hospital-based study included new patients (≤21 years of age) presenting between January 2016 and August 2018 from the district of Hyderabad with a clinical diagnosis of AED and an acute exacerbation of recent onset of symptoms of less than 3 months duration. Correlation analysis was performed with the local environmental rainfall, temperature, humidity, windspeed, and air pollution. Of the 25,354 new patients hailing from the district of Hyderabad, 2494 (9.84%) patients were diagnosed with AED, of which 1062 (4.19%) patients had recent onset of symptoms. The mean monthly prevalence in this cohort was 4.13%, and the month of May (6.09%) showed the highest levels. The environmental parameters of humidity (r2 = 0.83/p = < 0.0001) and rainfall (r2 = 0.41/p = 0.0232) showed significant negative correlation, while temperature (r2 = 0.43/p = 0.0206) and ground-level ozone (r2 = 0.41/p = 0.0005) showed significant positive correlation with the temporal pattern of AED in the population. An increase in rainfall and humidity was associated with a lower prevalence, and an increase of temperature and ground-level ozone was associated with a higher prevalence of AED cases during the year among children and adolescents.


Author(s):  
Oskar Wiśniewski ◽  
Wiesław Kozak ◽  
Maciej Wiśniewski

AbstractCOVID-19, which is a consequence of infection with the novel viral agent SARS-CoV-2, first identified in China (Hubei Province), has been declared a pandemic by the WHO. As of September 10, 2020, over 70,000 cases and over 2000 deaths have been recorded in Poland. Of the many factors contributing to the level of transmission of the virus, the weather appears to be significant. In this work, we analyze the impact of weather factors such as temperature, relative humidity, wind speed, and ground-level ozone concentration on the number of COVID-19 cases in Warsaw, Poland. The obtained results show an inverse correlation between ground-level ozone concentration and the daily number of COVID-19 cases.


Author(s):  
An Zhang ◽  
Jinhuang Lin ◽  
Wenhui Chen ◽  
Mingshui Lin ◽  
Chengcheng Lei

Long-term exposure to ozone pollution will cause severe threats to residents’ physical and mental health. Ground-level ozone is the most severe air pollutant in China’s Pearl River Delta Metropolitan Region (PRD). It is of great significance to accurately reveal the spatial–temporal distribution characteristics of ozone pollution exposure patterns. We used the daily maximum 8-h ozone concentration data from PRD’s 55 air quality monitoring stations in 2015 as input data. We used six models of STK and ordinary kriging (OK) for the simulation of ozone concentration. Then we chose a better ozone pollution prediction model to reveal the ozone exposure characteristics of the PRD in 2015. The results show that the Bilonick model (BM) model had the highest simulation precision for ozone in the six models for spatial–temporal kriging (STK) interpolation, and the STK model’s simulation prediction results are significantly better than the OK model. The annual average ozone concentrations in the PRD during 2015 showed a high spatial variation in the north and east and low in the south and west. Ozone concentrations were relatively high in summer and autumn and low in winter and spring. The center of gravity of ozone concentrations tended to migrate to the north and west before moving to the south and then finally migrating to the east. The ozone’s spatial autocorrelation was significant and showed a significant positive correlation, mainly showing high-high clustering and low-low clustering. The type of clustering undergoes temporal migration and conversion over the four seasons, with spatial autocorrelation during winter the most significant.


Sign in / Sign up

Export Citation Format

Share Document