scholarly journals Long-term aftereffects of response inhibition: Memory retrieval, task goals, and cognitive control.

Author(s):  
Frederick Verbruggen ◽  
Gordon D. Logan
Author(s):  
David Beltrán ◽  
Bo Liu ◽  
Manuel de Vega

AbstractNegation is known to have inhibitory consequences for the information under its scope. However, how it produces such effects remains poorly understood. Recently, it has been proposed that negation processing might be implemented at the neural level by the recruitment of inhibitory and cognitive control mechanisms. On this line, this manuscript offers the hypothesis that negation reuses general-domain mechanisms that subserve inhibition in other non-linguistic cognitive functions. The first two sections describe the inhibitory effects of negation on conceptual representations and its embodied effects, as well as the theoretical foundations for the reuse hypothesis. The next section describes the neurophysiological evidence that linguistic negation interacts with response inhibition, along with the suggestion that both functions share inhibitory mechanisms. Finally, the manuscript concludes that the functional relation between negation and inhibition observed at the mechanistic level could be easily integrated with predominant cognitive models of negation processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koya Yamashiro ◽  
Yudai Yamazaki ◽  
Kanako Siiya ◽  
Koyuki Ikarashi ◽  
Yasuhiro Baba ◽  
...  

AbstractLong-term skills training is known to induce neuroplastic alterations, but it is still debated whether these changes are always modality-specific or can be supramodal components. To address this issue, we compared finger-targeted somatosensory-evoked and auditory-evoked potentials under both Go (response) and Nogo (response inhibition) conditions between 10 baseball players, who require fine hand/digit skills and response inhibition, to 12 matched track and field (T&F) athletes. Electroencephalograms were obtained at nine cortical electrode positions. Go potentials, Nogo potentials, and Go/Nogo reaction time (Go/Nogo RT) were measured during equiprobable somatosensory and auditory Go/Nogo paradigms. Nogo potentials were obtained by subtracting Go trial from Nogo trial responses. Somatosensory Go P100 latency and Go/Nogo RT were significantly shorter in the baseball group than the T&F group, while auditory Go N100 latency and Go/Nogo RT did not differ between groups. Additionally, somatosensory subtracted Nogo N2 latency was significantly shorter in the baseball group than the T&F group. Furthermore, there were significant positive correlations between somatosensory Go/Nogo RT and both Go P100 latency and subtracted Nogo N2 latency, but no significant correlations among auditory responses. We speculate that long-term skills training induce predominantly modality-specific neuroplastic changes that can improve both execution and response inhibition.


2010 ◽  
Vol 22 (3) ◽  
pp. 513-525 ◽  
Author(s):  
Sarah L. Israel ◽  
Tyler M. Seibert ◽  
Michelle L. Black ◽  
James B. Brewer

Hippocampal activity is modulated during episodic memory retrieval. Most consistently, a relative increase in activity during confident retrieval is observed. Dorsolateral prefrontal cortex (DLPFC) is also activated during retrieval, but may be more generally activated during cognitive-control processes. The “default network,” regions activated during rest or internally focused tasks, includes the hippocampus, but not DLPFC. Therefore, DLPFC and the hippocampus should diverge during difficult tasks suppressing the default network. It is unclear, however, whether a difficult episodic memory retrieval task would suppress the default network due to difficulty or activate it due to internally directed attention. We hypothesized that a task requiring episodic retrieval followed by rumination on the retrieved item would increase DLPFC activity, but paradoxically reduce hippocampal activity due to concomitant suppression of the default network. In the present study, blocked and event-related fMRI were used to examine hippocampal activity during episodic memory recollection and postretrieval processing of paired associates. Subjects were asked to make living/nonliving judgments about items visually presented (classify) or items retrieved from memory (recall–classify). Active and passive baselines were used to differentiate task-related activity from default-network activity. During the “recall–classify” task, anterior hippocampal activity was selectively reduced relative to “classify” and baseline tasks, and this activity was inversely correlated with DLPFC. Reaction time was positively correlated with DLPFC activation and default-network/hippocampal suppression. The findings demonstrate that frontal and hippocampal activity are dissociated during difficult episodic retrieval tasks and reveal important considerations for interpreting hippocampal activity associated with successful episodic retrieval.


2019 ◽  
Vol 121 (5) ◽  
pp. 1633-1643 ◽  
Author(s):  
Maik Pertermann ◽  
Moritz Mückschel ◽  
Nico Adelhöfer ◽  
Tjalf Ziemssen ◽  
Christian Beste

Several lines of evidence suggest that there is a close interrelation between the degree of noise in neural circuits and the activity of the norepinephrine (NE) system, yet the precise nexus between these aspects is far from being understood during human information processing and cognitive control in particular. We examine this nexus during response inhibition in n = 47 healthy participants. Using high-density EEG recordings, we estimate neural noise by calculating “1/ f noise” of those data and integrate these EEG parameters with pupil diameter data as an established indirect index of NE system activity. We show that neural noise is reduced when cognitive control processes to inhibit a prepotent/automated response are exerted. These neural noise variations were confined to the theta frequency band, which has also been shown to play a central role during response inhibition and cognitive control. There were strong positive correlations between the 1 /f neural noise parameter and the pupil diameter data within the first 250 ms after the Nogo stimulus presentation at centro-parietal electrode sites. No such correlations were evident during automated responding on Go trials. Source localization analyses using standardized low-resolution brain electromagnetic tomography show that inferior parietal areas are activated in this time period in Nogo trials. The data suggest an interrelation of NE system activity and neural noise within early stages of information processing associated with inferior parietal areas when cognitive control processes are required. The data provide the first direct evidence for the nexus between NE system activity and the modulation of neural noise during inhibitory control in humans. NEW & NOTEWORTHY This is the first study showing that there is a nexus between norepinephrine system activity and the modulation of neural noise or scale-free neural activity during inhibitory control in humans. It does so by integrating pupil diameter data with analysis of EEG neural noise.


2016 ◽  
Vol 33 (S1) ◽  
pp. S412-S412
Author(s):  
V. Giannouli

IntroductionThere is a hypothesis in cognitive psychology that long-term memory retrieval is improved by intermediate testing than by restudying the information. The effect of testing has been investigated with the use of a variety of stimuli. However, almost all testing effect studies to date have used purely verbal materials such as word pairs, facts and prose passages.ObjectiveHere byzantine music symbol–word pairs were used as to-be-learned materials to demonstrate the generalisability of the testing effect to symbol learning in participants with and without depressive symptoms.MethodFifty healthy (24 women, M age = 26.20, SD = 5.64) and forty volunteers with high depressive symptomatology (20 women, M age = 27.00, SD = 1.04) were examined. The participants did not have a music education. The examination material was completely new for them: 16 byzantine music notation stimuli, paired with a verbal label (the ancient Greek name of the symbol). Half of the participants underwent intermediate testing and the others restudied the information in a balanced design.ResultsResults indicated that there were no statistically significant differences in final memory test performance after a retention interval of 5 minutes for both groups of participants with low and high level depressive symptomatology (P > 0.005). After a retention interval of a week, tested pairs were retained better than repeatedly studied pairs for high and low depressive symptomatology groups (P < 0.005).ConclusionsThis research suggests that the effect of testing time on later memory retrieval can also be obtained in byzantine symbol learning.Disclosure of interestThe authors have not supplied their declaration of competing interest.


1999 ◽  
Vol 11 (6) ◽  
pp. 598-609 ◽  
Author(s):  
Charan Ranganath ◽  
Ken A. Paller

Previous neuropsychological and neuroimaging results have implicated the prefrontal cortex in memory retrieval, although its precise role is unclear. In the present study, we examined patterns of brain electrical activity during retrieval of episodic and semantic memories. In the episodic retrieval task, participants retrieved autobiographical memories in response to event cues. In the semantic retrieval task, participants generated exemplars in response to category cues. Novel sounds presented intermittently during memory retrieval elicited a series of brain potentials including one identifiable as the P3a potential. Based on prior research linking P3a with novelty detection and with the frontal lobes, we predicted that P3a would be reduced to the extent that novelty detection and memory retrieval interfere with each other. Results during episodic and semantic retrieval tasks were compared to results during a task in which subjects attended to the auditory stimuli. P3a amplitudes were reduced during episodic retrieval, particularly at right lateral frontal scalp locations. A similar but less lateralized pattern of frontal P3a reduction was observed during semantic retrieval. These findings support the notion that the right prefrontal cortex is engaged in the service of memory retrieval, particularly for episodic memories.


2022 ◽  
Vol 15 ◽  
Author(s):  
Jean Gagnon ◽  
Joyce Emma Quansah ◽  
Paul McNicoll

Research on cognitive processes has primarily focused on cognitive control and inhibitory processes to the detriment of other psychological processes, such as defense mechanisms (DMs), which can be used to modify aggressive impulses as well as self/other images during interpersonal conflicts. First, we conducted an in-depth theoretical analysis of three socio-cognitive models and three psychodynamic models and compared main propositions regarding the source of aggression and processes that influence its enactment. Second, 32 participants completed the Hostile Expectancy Violation Paradigm (HEVP) in which scenarios describe a hostile vs. non-hostile social context followed by a character's ambiguous aversive behavior. The N400 effect to critical words that violate expected hostile vs. non-hostile intent of the behavior was analyzed. Prepotent response inhibition was measured using a Stop Signal task (SST) and DMs were assessed with the Defense Style Questionnaire (DSQ-60). Results showed that reactive aggression and HIA were not significantly correlated with response inhibition but were significantly positively and negatively correlated with image distorting defense style and adaptive defense style, respectively. The present article has highlighted the importance of integrating socio-cognitive and psychodynamic models to account for the full complexity underlying psychological processes that influence reactive aggressive behavior.


Sign in / Sign up

Export Citation Format

Share Document