scholarly journals Cognitive Control Processes and Defense Mechanisms That Influence Aggressive Reactions: Toward an Integration of Socio-Cognitive and Psychodynamic Models of Aggression

2022 ◽  
Vol 15 ◽  
Author(s):  
Jean Gagnon ◽  
Joyce Emma Quansah ◽  
Paul McNicoll

Research on cognitive processes has primarily focused on cognitive control and inhibitory processes to the detriment of other psychological processes, such as defense mechanisms (DMs), which can be used to modify aggressive impulses as well as self/other images during interpersonal conflicts. First, we conducted an in-depth theoretical analysis of three socio-cognitive models and three psychodynamic models and compared main propositions regarding the source of aggression and processes that influence its enactment. Second, 32 participants completed the Hostile Expectancy Violation Paradigm (HEVP) in which scenarios describe a hostile vs. non-hostile social context followed by a character's ambiguous aversive behavior. The N400 effect to critical words that violate expected hostile vs. non-hostile intent of the behavior was analyzed. Prepotent response inhibition was measured using a Stop Signal task (SST) and DMs were assessed with the Defense Style Questionnaire (DSQ-60). Results showed that reactive aggression and HIA were not significantly correlated with response inhibition but were significantly positively and negatively correlated with image distorting defense style and adaptive defense style, respectively. The present article has highlighted the importance of integrating socio-cognitive and psychodynamic models to account for the full complexity underlying psychological processes that influence reactive aggressive behavior.

2013 ◽  
Vol 19 (8) ◽  
pp. 890-898 ◽  
Author(s):  
Lucien Rochat ◽  
Catia Beni ◽  
Jean-Marie Annoni ◽  
Philippe Vuadens ◽  
Martial Van der Linden

AbstractImpulsive behaviors and poor inhibition performances are frequently described in patients with traumatic brain injury (TBI). However, few studies have examined impulsivity and associated inhibition impairments in these patients. Twenty-eight patients with moderate to severe TBI and 27 matched controls performed a stop-signal task designed to assess prepotent response inhibition (the ability to inhibit a dominant or automatic motor response) in a neutral or emotional context and a recent negative task to assess resistance to proactive interference (the ability to resist the intrusion into memory of information that was previously relevant but has since become irrelevant). Informants of each patient completed a short questionnaire designed to assess impulsivity. Patients showed a significant increase in current urgency, lack of premeditation, and lack of perseverance when retrospectively compared with the preinjury condition. Group comparisons revealed poorer prepotent response inhibition and resistance to proactive interference performances in patients with TBI. Finally, correlation analyses revealed a significant positive correlation between urgency (the tendency to act rashly when distressed) and prepotent response inhibition in patients with TBI. This study sheds new light on the construct of impulsivity after a TBI, its related cognitive mechanisms, and its potential role in problematic behaviors described after a TBI. (JINS, 2013, 19, 1–9)


2005 ◽  
Vol 19 (5) ◽  
pp. 578-590 ◽  
Author(s):  
Paul J. Seignourel ◽  
Diana L. Robins ◽  
Michael J. Larson ◽  
Jason A. Demery ◽  
Michael Cole ◽  
...  

2019 ◽  
Author(s):  
Justin M. Fine ◽  
Maria E. Fini ◽  
Archana S. Mysore ◽  
William J. Tyler ◽  
Marco Santello

AbstractResponse inhibition is necessary for humans to safeguard against undesirable action consequences. Inhibitory control consistently recruits the prefrontal right inferior frontal gyrus (rIFG) and pre-supplementary motor area. Yet, whether inhibitory control is a defining function of rIFG, distinct from attentional orienting, remains widely debated. The issue emerges from previous studies reporting inhibitory and attentional demands both elicit rIFG activation. Here, we address this issue based on the proposition that inhibitory and attentional control are predicated on different network mechanisms. We derived and causally tested network mechanisms using EEG, dynamic causal modeling (DCM) and focused ultrasound stimulation in humans performing a Stop-Signal task. rIFG stimulation increased inhibitory performance and speed. DCM of evoked responses linked behavioral inhibition to rIFG top-down gain modulation of pre-SMA inhibitory populations. These results reconcile competing accounts of prefrontal cognitive control function, by identifying rIFG-based inhibitory mechanisms as distinct from other top-down cognitive control processes.


2011 ◽  
Vol 23 (11) ◽  
pp. 3380-3387 ◽  
Author(s):  
Liron Jacobson ◽  
Daniel C. Javitt ◽  
Michal Lavidor

A common feature of human existence is the ability to reverse decisions after they are made but before they are implemented. This cognitive control process, termed response inhibition, refers to the ability to inhibit an action once initiated and has been localized to the right inferior frontal gyrus (rIFG) based on functional imaging and brain lesion studies. Transcranial direct current stimulation (tDCS) is a brain stimulation technique that can facilitate as well as impair cortical function. To explore whether response inhibition can be improved through rIFG electrical stimulation, we administered focal tDCS before subjects performed the stop signal task (SST), which measures response inhibition. Notably, activation of the rIFG by unilateral anodal stimulation significantly improved response inhibition, relative to a sham condition, whereas the same tDCS protocol did not affect response time in the go trials of the SST and in a control task. Furthermore, the SST was not affected by tDCS at a control site, the right angular gyrus. Our results are the first demonstration of response inhibition improvement with brain stimulation over rIFG and further confirm the rIFG involvement in this task. Although this study was conducted in healthy subjects, present findings with anodal rIFG stimulation support the use of similar paradigms for the treatment of cognitive control impairments in pathological conditions.


Author(s):  
David Beltrán ◽  
Bo Liu ◽  
Manuel de Vega

AbstractNegation is known to have inhibitory consequences for the information under its scope. However, how it produces such effects remains poorly understood. Recently, it has been proposed that negation processing might be implemented at the neural level by the recruitment of inhibitory and cognitive control mechanisms. On this line, this manuscript offers the hypothesis that negation reuses general-domain mechanisms that subserve inhibition in other non-linguistic cognitive functions. The first two sections describe the inhibitory effects of negation on conceptual representations and its embodied effects, as well as the theoretical foundations for the reuse hypothesis. The next section describes the neurophysiological evidence that linguistic negation interacts with response inhibition, along with the suggestion that both functions share inhibitory mechanisms. Finally, the manuscript concludes that the functional relation between negation and inhibition observed at the mechanistic level could be easily integrated with predominant cognitive models of negation processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Paci ◽  
Giulio Di Cosmo ◽  
Mauro Gianni Perrucci ◽  
Francesca Ferri ◽  
Marcello Costantini

AbstractInhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP’s duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.


2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Russell J. Boag ◽  
Niek Stevenson ◽  
Roel van Dooren ◽  
Anne C. Trutti ◽  
Zsuzsika Sjoerds ◽  
...  

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM’s limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.


Author(s):  
Philippe Pfeifer ◽  
Alexandra Sebastian ◽  
Hans Georg Buchholz ◽  
Christoph P. Kaller ◽  
Gerhard Gründer ◽  
...  

AbstractD2-like dopamine receptors in animals and humans have been shown to be linked to impulsive behaviors that are highly relevant for several psychiatric disorders. Here, we investigate the relationship between the fronto-striatal D2/D3 dopamine receptor availability and response inhibition in a selected population of healthy OPRM1 G-allele carriers. Twenty-two participants successively underwent blood-oxygen level dependent functional magnetic resonance imaging (fMRI) while performing a stop-signal task and a separate positron emission tomography (PET) scan. Striatal and extrastriatal D2/D3 dopamine receptor availability was measured using the radiotracer [18F]fallypride. Caudate D2/D3 dopamine receptor availability positively correlated with stopping-related fronto-striatal fMRI activation. In addition, right prefrontal D2/D3 dopamine receptor availability correlated positively with stopping-related striatal fMRI BOLD signal. Our study partially replicates previous findings on correlations between striatal D2/D3 dopamine receptor availability and response inhibition in a population selected for its genetic determination of dopamine response to alcohol and as a modulator of impulse control via the endogenous opioid system. We confirm the important role of D2/D3 dopamine receptor availability in the fronto-striatal neural circuit for response inhibition. Moreover, we extend previous findings suggesting that dopamine receptor availability in the right inferior frontal cortex, a crucial region of the stopping network, is also strongly associated with stopping-related striatal fMRI activity in healthy OPRM1 G-allele carriers.


2019 ◽  
Vol 121 (5) ◽  
pp. 1633-1643 ◽  
Author(s):  
Maik Pertermann ◽  
Moritz Mückschel ◽  
Nico Adelhöfer ◽  
Tjalf Ziemssen ◽  
Christian Beste

Several lines of evidence suggest that there is a close interrelation between the degree of noise in neural circuits and the activity of the norepinephrine (NE) system, yet the precise nexus between these aspects is far from being understood during human information processing and cognitive control in particular. We examine this nexus during response inhibition in n = 47 healthy participants. Using high-density EEG recordings, we estimate neural noise by calculating “1/ f noise” of those data and integrate these EEG parameters with pupil diameter data as an established indirect index of NE system activity. We show that neural noise is reduced when cognitive control processes to inhibit a prepotent/automated response are exerted. These neural noise variations were confined to the theta frequency band, which has also been shown to play a central role during response inhibition and cognitive control. There were strong positive correlations between the 1 /f neural noise parameter and the pupil diameter data within the first 250 ms after the Nogo stimulus presentation at centro-parietal electrode sites. No such correlations were evident during automated responding on Go trials. Source localization analyses using standardized low-resolution brain electromagnetic tomography show that inferior parietal areas are activated in this time period in Nogo trials. The data suggest an interrelation of NE system activity and neural noise within early stages of information processing associated with inferior parietal areas when cognitive control processes are required. The data provide the first direct evidence for the nexus between NE system activity and the modulation of neural noise during inhibitory control in humans. NEW & NOTEWORTHY This is the first study showing that there is a nexus between norepinephrine system activity and the modulation of neural noise or scale-free neural activity during inhibitory control in humans. It does so by integrating pupil diameter data with analysis of EEG neural noise.


Sign in / Sign up

Export Citation Format

Share Document